25 câu trắc nghiệm Ôn tập chương 3 Hình học 12 có đáp án (phần 1)
Với 25 bài tập & câu hỏi trắc nghiệm chương 3 Hình học lớp 12 có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán Hình 12.
25 câu trắc nghiệm Ôn tập chương 3 Hình học 12 có đáp án (phần 1)
Câu 1: Trong không gian Oxyz, cho vectơ
Câu 2: Trong không gian Oxyz, cho tam giác ABC. Điều kiện nào dưới đây không tương đương với điều kiện G là trọng tâm của tam giác ABC.
C. Công thức tọa độ của điểm G là:
D. OA + OB + OC ≥ 3OG
G là trọng tâm của tam giác ABC khi và chỉ khi một trong các điều kiện xảy ra:
Câu 3: Trong không gian Oxyz, cho ba điểm A(3; 0; 0), B(0; 3; 0), C(0; 0; 3). Gọi G là trọng tâm tam giác ABC. Trong các khẳng định sau, khẳng định nào sai?
A. OA = OB = OC B. GA = GB = GC C. OG ⊥ (ABC) D. OG = 3
Câu 4: Trong không gian Oxyz, cho hình bình hành ABDC. Biết rằng A(1;3;5), B(3;1;1), C(5;8;9). Trong các khẳng định sau, khẳng định nào sai?
Câu 5: Trong không gian Oxyz, cho hai điểm A(1; 2; 3), B(x0, y0, 5) . Đường thẳng AB song song với trục Oz khi và chỉ khi:
A. x0 = 1 C. x0 = 1 và y0 = 2
B. x0 = y0 = 0 D. x0 = 1 hoặc y0 = 2
Trục Oz có vecto chỉ phương là k→(0; 0; 1)
Lại có: AB→(X0 - 1; y0 - 2; 2)
Để đường thẳng AB song song với trục Oz khi và chỉ khi hai vecto AB→; k→ cùng phương
Tồn tại số a khác 0 sao cho: AB→ = a.k→
Câu 6: Trong không gian Oxyz,lập phương trình mặt phẳng (P) đi qua điểm A(2;1;-3) và vuông góc với trục Oy
A. x + z + 1 = 0 B. y - 1 = 0 C. y + 1 = 0 D. 2x + y - 3z - 1 = 0
Vì mặt phẳng (P) vuông góc với trục Oy nên nhận vecto j→(0; 1; 0) làm vecto pháp tuyến.
Phương trình mặt phẳng(P) là:
0(x - 2) + 1(y - 1) + 0(z + 3) = 0 hay y – 1 = 0
Câu 7: Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua hai điểm A(1;0;1), B(2;1;3) và song song với trục Oz
A. x - y + 1 = 0 B. x + y - 1 = 0 C. x - y - 1 = 0 D. x + z - 1 = 0
Ta có: AB→(1; 1; 2)
Trục Oz có vecto chỉ phương k→(0; 0; 1).
Vì mặt phẳng (P) đi qua hai điểm A , B và song song trục Oz nên mặt phẳng này vecto
[AB→; k→] = (1; -1; 0) làm vecto pháp tuyến.
Phương trình mặt phẳng (P):
1(x - 1) -1(y - 0)+ 0( z - 1) = 0 hay x – y - 1= 0
Câu 8: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình (m2 + m)x + y + (m - 2)z + m2 - m = 0 , trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) song song với trục Ox?
A. m = -1 B. m = 0 hoặc m = -1 C. m = 0 D. m = 2
Mặt phẳng (P) song song với trục Ox khi và chỉ khi
Câu 9: Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có phương trình là x + y - 2z = 0; 2x + (m2 + m)y - 4z + 2m2 + 2m - 4 = 0 , trong đó m là tham số. Với những giá trị nào của m thì hai mặt phẳng (P) và (Q) song song.
A. m = 1 hoặc m = -2 C. m = -2
B. m = 1 D. Không có m thỏa mãn
Hai mặt phẳng (P) và (Q) có vecto pháp tuyến là np→(1; 1 ; -2); nQ→ = (2; m2 + m; -4)
Hai mặt phẳng (P) và (Q) song song khi và chỉ khi tồn tại một số thực k sao cho
Hệ trên vô nghiệm. Vậy không tồn tại m thỏa mãn bài toán.
Câu 10: Trong không gian Oxyz, cho mặt cầu (S): (x + 1)2 + (y + 2)2 + (z - 3)2 = 1. Lập phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A(-1;-2;4)
A. z - 2 = 0 hoặc z + 2 = 0 C. z - 2 = 0 hoặc z - 4 = 0
B. z - 4 = 0 D. z + 2 = 0
Mặt cầu (S) có tâm I(-1; -2; 3)
Vì mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A nên mặt phẳng (P) nhận vectơ nP→ = IA→ = (0; 0; 1) là vectơ pháp tuyến.
Vậy phương trình của mặt phẳng (P) là: 0(x + 1) + 0(y + 2) + 1(z - 4) = 0 ⇔ z - 4 = 0
Câu 11: Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y + z + 1 = 0 và (Q): 2x + 4y + az + b = 0 . Tìm a và b sao cho khoảng cách giữa hai mặt phẳng đó bằng 1.
A. a = 4 và b = 8 C. a = -2 và b = 38 hoặc b = -34
B. a = 4 và b = 8 hoặc b = -4 D. a = 4 và b = 38 hoặc b = -34
Để khoảng cách giưa hai mặt phẳng (P) và (Q) lớn hơn 0 thì trước hết hai mặt phẳng đó phải song song (nếu hai mặt phẳng đó trùng nhau hoặc cắt nhau thì khoảng cách giữa chúng sẽ bằng 0). Do đó ta có:
Lấy điểm A(-1;0;0) ∈ (P). Khi đó ta có:
Câu 12: Trong không gian Oxyz, cho M là một điểm thay đổi trên mặt cầu (S) có tâm I(2;2;2), bán kính R=1. Tập hợp những điểm M’ đối xứng với điểm M qua gốc tọa độ là mặt cầu (S’) có phương trình là:
A. (x - 2)2 + (y - 2)2 + (z - 2)2 = 1 C. (x + 2)2 + (y - 2)2 + (z - 2)2 = 1
B. (x - 2)2 + (y + 2)2 + (z - 2)2 = 1 D. (x + 2)2 + (y + 2)2 + (z + 2)2 = 1
Tập hợp những điểm M’ đối xứng với điểm M qua gốc tọa độ là mặt cầu (S’) có tâm I’( -2; -2; -2) – là điểm đối xứng với tâm I qua gốc tọa độ O và bán kính R’ = R = 1.
Phương trình mặt cầu (S’) là: (x + 2)2 + (y + 2)2 + (z + 2)2 = 1
Câu 13: Cho mặt cầu (S) có phương trình: x2 + y2 + z2 - 2x + 4y - 6z - 2 = 0. Điểm M(m; -2; 3) nằm ngoài mặt cầu khi và chỉ khi:
A. m < -3 hoặc m > 5 B. m < -3 C. -3 ≤ m ≤ 5 D. m > 5
Mặt cầu (S) có tâm
M nằm ngoài mặt cầu (S) khi và chỉ khi:
Xem thêm Bài tập trắc nghiệm Hình học 12 ôn thi Tốt nghiệp THPT có đáp án hay khác:
- 50 câu trắc nghiệm Phương trình đường thẳng có đáp án (phần 1)
- 50 câu trắc nghiệm Phương trình đường thẳng có đáp án (phần 2)
- 50 câu trắc nghiệm Phương trình đường thẳng có đáp án (phần 3)
- 25 câu trắc nghiệm Ôn tập Chương 3 Hình học 12 có đáp án (phần 2)
- Đề kiểm tra Chương 3 Hình học 12 có đáp án
- 37 câu trắc nghiệm Ôn tập cuối năm có đáp án
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều