Vận dụng trang 10 Chuyên đề Toán 12 Chân trời sáng tạo

Giải Chuyên đề Toán 12 Bài 1: Bài toán quy hoạch tuyến tính - Chân trời sáng tạo

Vận dụng trang 10 Chuyên đề Toán 12: Cho bài toán quy hoạch tuyến tính F = 3x + 3y → max, min có tập phương án Ω là miền tứ giác ABCD (được tô màu như Hình 5) với các đỉnh là A(0; 5), B(4; 1), C(2; 1) và D(0; 2).

Quảng cáo

Vận dụng trang 10 Chuyên đề Toán 12 Chân trời sáng tạo

a) Giải bài toán quy hoạch tuyến tính đã cho.

b) Hàm mục tiêu F đạt giá trị lớn nhất trên Ω tại bao nhiêu điểm? Giải thích. 

Lời giải:

a) Tập phương án Ω của bài toán là miền tứ giác miền tứ giác ABCD (được tô màu như Hình 5) với các đỉnh là A(0; 5), B(4; 1), C(2; 1) và D(0; 2).

Giá trị của biểu thức F tại các đỉnh của Ω:

F(0; 5) = 3 ∙ 0 + 3 ∙ 5 = 15;

F(4; 1) = 3 ∙ 4 + 3 ∙ 1 = 15;

F(2; 1) = 3 ∙ 2 + 3 ∙ 1 = 9;

F(0; 2) = 3 ∙ 0 + 3 ∙ 2 = 6.

Từ đó, maxΩF=F0;5=F4;1=15;  minΩF=F0;2=6.

b) Nhận thấy rằng đường thẳng AB có phương trình x + y – 5 = 0, tức là x + y = 5, nên với mọi điểm M(x; y) thuộc đường thẳng AB ta đều có

F(x; y) = 3x + 3y = 3(x + y) = 3 ∙ 5 = 15.

Vậy hàm mục tiêu F đạt giá trị lớn nhất bằng 15 tại mọi điểm M(x; y) thuộc đoạn thẳng AB. Như vậy, hàm mục tiêu F đạt giá trị lớn nhất trên Ω tại vô số điểm, đó là các điểm thuộc đoạn thẳng AB.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 1: Bài toán quy hoạch tuyến tính hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 sách mới các môn học