Toán lớp 9 Chương 1: Căn bậc hai. Căn bậc ba
"Một lần đọc là một lần nhớ". Nhằm mục đích giúp học sinh dễ dàng làm bài tập sách giáo khoa môn Toán lớp 9, loạt bài Giải bài tập Toán lớp 9 Tập 1 Đại số Chương 1: Căn bậc hai. Căn bậc ba hay nhất với lời giải được biên soạn công phu có kèm video giải chi tiết bám sát nội dung sgk Toán 9. Hi vọng với các bài giải bài tập Toán lớp 9 này, học sinh sẽ yêu thích và học tốt môn Toán 9 hơn.
Mục lục giải bài tập Toán lớp 9 Chương 1: Căn bậc hai. Căn bậc ba
- Toán lớp 9 Bài 1: Căn bậc hai
- Toán lớp 9 Bài 2: Căn thức bậc hai và hằng đẳng thức
- Toán lớp 9 Luyện tập trang 11-12
- Toán lớp 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương
- Toán lớp 9 Luyện tập trang 15-16
- Toán lớp 9 Bài 4: Liên hệ giữa phép chia và phép khai phương
- Toán lớp 9 Luyện tập trang 19-20
- Toán lớp 9 Bài 5: Bảng căn bậc hai
- Toán lớp 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- Toán lớp 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
- Toán lớp 9 Luyện tập trang 30
- Toán lớp 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
- Toán lớp 9 Luyện tập trang 33-34
- Toán lớp 9 Bài 9: Căn bậc ba
- Toán lớp 9 Ôn tập chương I
Giải bài tập Toán lớp 9 Bài 1: Căn bậc hai
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 4 : Tìm các căn bậc hai của mỗi số sau:
a) 9; b) 4/9; c) 0,25; d) 2.
Lời giải
a) Căn bậc hai của 9 là 3 và -3 (vì 32 = 9 và (-3)2 = 9)
b) Căn bậc hai của 4/9 là 2/3 và (-2)/3 (vì (2/3)2 = 4/9 và(-2/3)2 = 4/9)
c) Căn bậc hai của 0,25 là 0,5 và -0,5 (vì 0,52 = 0,25 và (-0,5)2 = 0,25)
d) Căn bậc hai của 2 là √2 và -√2 (vì (√2)2 = 2 và(-√2)2 = 2 )
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5 : Tìm căn bậc hai số học của mỗi số sau:
a) 49; b) 64; c) 81; d) 1,21.
Lời giải
a) √49 = 7, vì 7 > 0 và 72 = 49
b) √64 = 8, vì 8 > 0 và 82 = 64
c) √81 = 9, vì 9 > 0 và 92 = 81
d) √1,21 = 1,1 vì 1,1 > 0 và 1,12 = 1,21
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5 : Tìm căn bậc hai của mỗi số sau:
a) 64; b) 81; c) 1,21.
Lời giải
a) Các căn bậc hai của 64 là 8 và -8
b) Các căn bậc hai của 81 là 9 và -9
c) Các căn bậc hai của 1,21 là 1,1 và -1,1
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6 : So sánh
a) 4 và √15; b) √11 và 3.
Lời giải
a) 16 > 15 nên √16 > √15. Vậy 4 > √15
b) 11 > 9 nên √11 > √9. Vậy √11 > 3
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6 : Tìm số x không âm, biết:
a) √x > 1; b) √x < 3.
Lời giải
a) 1 = √1, nên √x > 1 có nghĩa là √x > √1
Vì x ≥ 0 nên √x > √1 ⇔ x > 1. Vậy x > 1
b) 3 = √9, nên √x < 3 có nghĩa là √x < √9
Vì x ≥ 0 nên √x < √9 ⇔ x < 9. Vậy x < 9
121; 144; 169; 225; 256; 324; 361; 400
Lời giải:
Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên
Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.
Tương tự:
Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.
Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.
Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.
Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.
Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.
Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.
Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.
Bài 2 trang 6 SGK Toán lớp 9 Tập 1: So sánh:
a) 2 và √3 ; b) 6 và √41 ; c) 7 và √47
a) 2 = √4
Vì 4 > 3 nên √4 > √3 (định lí)
Vậy 2 > √3
b) 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
a) x2 = 2 ; b) x2 = 3
c) x2 = 3,5 ; d) x2 = 4,12
Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là các căn bậc hai của a.
Lời giải:
a) x2 = 2 => x1 = √2 và x2 = -√2
Dùng máy tính bỏ túi ta tính được:
√2 ≈ 1,414213562
Kết quả làm tròn đến chữ số thập phân thứ ba là:
x1 = 1,414; x2 = - 1,414
b) x2 = 3 => x1 = √3 và x2 = -√3
Dùng máy tính ta được:
√3 ≈ 1,732050907
Vậy x1 = 1,732; x2 = - 1,732
c) x2 = 3,5 => x1 = √3,5 và x2 = -√3,5
Dùng máy tính ta được:
√3,5 ≈ 1,870828693
Vậy x1 = 1,871; x2 = - 1,871
d) x2 = 4,12 => x1 = √4,12 và x2 = -√4,12
Dùng máy tính ta được:
√4,12 ≈ 2,029778313
Vậy x1 = 2,030 ; x2 = - 2,030
Bài 4 trang 7 SGK Toán lớp 9 Tập 1: Tìm số x không âm, biết:
a) √x = 15; b) 2√x = 14
c) √x < √2; d) √2x < 4
Lời giải:
Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.
a) √x = 15
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 152 ⇔ x = 225
Vậy x = 225
b) 2√x = 14 ⇔ √x = 7
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 72 ⇔ x = 49
Vậy x = 49
c) √x < √2
Vì x ≥ 0 nên bình phương hai vế ta được: x < 2
Vậy 0 ≤ x < 2
<d)
Vì x ≥ 0 nên bình phương hai vế ta được:
2x < 16 ⇔ x < 8
Vậy 0 ≤ x < 8
Hình 1
Lời giải:
Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)
Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là
SHV = a2 = 49 (m2)
=> a = 7 (m)
Vậy cạnh hình vuông có độ dài là 7m.
Ghi chú: Nếu ta cắt đôi hình chữ nhật thành hai hình chữ nhật có kích thước 3,5m x 7m thì ta sẽ ghép được hình vuông có cạnh là 7m.
.............................
Giải bài tập Toán lớp 9 Bài 2: Căn thức bậc hai và hằng đẳng thức
Lời giải
Áp dụng định lí Pytago vào tam giác ABC vuông tại B có:
AB2 + BC2 = AC2 ⇔ AB2 + x2 = 52
⇔ AB2 = 25 - x2
⇒ AB = √(25 - x2) (do AB > 0)
Trả lời câu hỏi Toán 9 Tập 1 Bài 2 trang 8 : Với giá trị nào của x thì √(5-2x) xác định ?
Lời giải
√(5 - 2x) xác định khi 5 - 2x ≥ 0
⇔ -2x ≥ -5
⇔ x ≤ 5/2
Trả lời câu hỏi Toán 9 Tập 1 Bài 2 trang 8 : Điền số thích hợp vào ô trống trong bảng sau:
a | -2 | -1 | 0 | 2 | 3 |
a2 | |||||
√(a2) |
Lời giải
a | -2 | -1 | 0 | 2 | 3 |
a2 | 4 | 1 | 0 | 4 | 9 |
√(a2) | 2 | 1 | 0 | 2 | 3 |
Bài 6 trang 10 SGK Toán lớp 9 Tập 1: Với giá trị nào của a thì mỗi căn thức sau có nghĩa:
Lời giải:
a)
b) Điều kiện -5a ≥ 0 => a ≤ 0
c) Điều kiện 4 – a ≥ 0 => -a ≥ -4 = > a ≤ 4
d) Điều kiện 3a + 7 ≥ 0 => 3a ≥ -7
Bài 7 trang 10 SGK Toán lớp 9 Tập 1: Tính:
Lời giải:
Bài 8 trang 10 SGK Toán lớp 9 Tập 1: Rút gọn các biểu thức sau:
Lời giải:
(vì 2 - √3 > 0 do 2 = √4 mà √4 > √3)
(vì √11 - 3 > 0 do 3 = √9 mà √11 > √9)
c) 2√a2 = 2|a| = 2a với a ≥ 0
(vì a < 2 nên 2 – a > 0)
Bài 9 trang 11 SGK Toán lớp 9 Tập 1: Tìm x biết:
Lời giải:
a) √x2 = 7 ⇔ |x| = 7
⇔ x1 = 7 và x2 = -7
b) √x2 = |-8| ⇔ √x2 = 8
⇔ |x| = 8 ⇔ x1 = 8 và x2 = -8
⇔ |x| = 3 ⇔ x1 = 3 và x2 = -3
⇔ |3x| = 12 ⇔ |x| = 4
⇔ x1 = 4 và x2 = -4
Bài 10 trang 11 SGK Toán lớp 9 Tập 1: Chứng minh:
Lời giải:
a) Ta có: VT = (√3 - 1)2 = (√3)2 - 2√3 + 1
= 3 - 2√3 + 1 = 4 - 2√3 = VP
Vậy (√3 - 1)2 = 4 - 2√3 (đpcm)
b) Theo câu a) ta có:
= |√3 - 1| - √3 = √3 - 1 - √3
= -1 = VP (vì √3 - 1 > 0) (đpcm)
.............................
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Video Giải bài tập Toán lớp 9 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 9 Tập 1, Tập 2 Đại số & Hình học.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều