Sách bài tập Toán 9 Chương 3: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
"Một lần đọc là một lần nhớ". Nhằm mục đích giúp học sinh dễ dàng làm bài tập sách bài tập môn Toán lớp 9, loạt bài Giải sách bài tập Toán lớp 9 Tập 2 Chương 3: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn hay nhất với lời giải được biên soạn công phu có kèm video giải chi tiết bám sát nội dung SBT Toán 9. Hi vọng với các bài giải bài tập trong sách bài tập Toán lớp 9 Đại số này, học sinh sẽ yêu thích và học tốt môn Toán 9 hơn.
Mục lục giải sách bài tập Toán 9 Chương 3: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
Bài 1 trang 5 Sách bài tập Toán 9 Tập 2: Cho các cặp số và các phương trình sau.
Hãy dùng mũi tên (như trong hình vẽ) chỉ rõ mỗi cặp số là nghiệm của những phương trình nào?
Lời giải:
Bài 2 trang 5 Sách bài tập Toán 9 Tập 2: Viết nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của mỗi phương trình sau:
a. 2x – y = 3; b. x + 2y = 4;
c. 3x – 2y = 6; d. 2x + 3y = 5;
e. 0x + 5y = -10; f. -4x + 0y = -12.
Lời giải:
a. 2x – y = 3
b. x + 2y = 4
Chọn x = 0 ⇒ y = 2. Đường thẳng đi qua điểm (0; 2)
Chọn y = 0 ⇒ x = 4 . Đường thẳng đi qua điểm (4; 0)
Vậy đường thẳng x + 2y = 4 đi qua hai điểm (0; 2) và (4; 0)
c. 3x - 2y = 6
Chọn x = 0 ⇒ y = -3. Đường thẳng đi qua điểm (0; -3)
Chọn y = 0 ⇒ x = 2. Đường thẳng đi qua điểm (2; 0)
Vậy đường thẳng 3x - 2y = 6 đi qua hai điểm (0; -3) và (2; 0)
d. 2x + 3y = 5
e. 0x + 5y = -10
Chọn x = 0 ⇒ y = -2. Đường thẳng đi qua điểm (0; -2)
Vậy đường thẳng 0x + 5y = -10 đi qua hai điểm (0; -2) và song song với Ox
f. -4x + 0y = -12
Chọn y = 0 x = 3. Đường thẳng đi qua điểm (3;0)
Vậy đường thẳng -4x + 0y = -12 đi qua hai điểm (3;0) và song song với Oy
Bài 3 trang 5 Sách bài tập Toán 9 Tập 2: Trong mỗi trường hợp sau, hãy tìm giá trị của m để:
a. Điểm M(1; 0) thuộc đường thẳng mx – 5y = 7;
b. Điểm N(0; -3) thuộc đường thẳng 2,5x + my = -21;
c. Điểm P(5; -3) thuộc đường thẳng mx + 2y = -1;
d. Điểm P(5; -3) thuộc đường thẳng 3x – my = 6;
e. Điểm Q(0,5; -3) thuộc đường thẳng mx + 0y = 17,5;
f. Điểm S(4; 0,3) thuộc đường thẳng 0x + my = 1,5;
g. Điểm A(2; -3) thuộc đường thẳng (m – 1)x + (m + 1)y = 2m +1.
Lời giải:
a. Điểm M(1; 0) thuộc đường thẳng mx – 5y = 7 nên tọa độ của M phải nghiệm đúng phương trình đường thẳng.
Khi đó: m.1 – 5.0 = 7 ⇔ m = 7
Vậy với m = 7 thì đường thẳng mx – 5y = 7 đi qua M(1; 0)
b. Điểm N(0; -3) thuộc đường thẳng 2,5x + my = -21 nên tọa độ của N phải nghiệm đúng phương trình đường thẳng.
Khi đó: 2,5.0 + m(-3) = -21 ⇔ m = 7
Vậy với m = 7 thì đường thẳng 2,5x + my = -21 đi qua N(0; -3)
c. Điểm P(5; -3) thuộc đường thẳng mx + 2y = -1 nên tọa độ của P phải nghiệm đúng phương trình đường thẳng.
Khi đó: m.5 + 2.(-3) = -1 ⇔ m = 1
Vậy với m = 1 thì đường thẳng mx + 2y = -1 đi qua P(5; -3)
d. Điểm P(5; -3) thuộc đường thẳng 3x – my = 6 nên tọa độ của P phải nghiệm đúng phương trình đường thẳng.
Khi đó: 3.5 – m.(-3) = 6 ⇔ m = -3
Vậy với m = -3 thì đường thẳng 3x – my = 6 đi qua P(5; -3)
e. Điểm Q(0,5; -3) thuộc đường thẳng mx + 0y = 17,5 nên tọa độ của Q phải nghiệm đúng phương trình đường thẳng.
Khi đó: m.0,5 + 0.(-3) = 17,5 ⇔ m = 35
Vậy với m = 35 thì đường thẳng mx + 0y = 17,5 đi qua Q(0,5; -3)
f. Điểm S(4; 0,3) thuộc đường thẳng 0x + my = 1,5 nên tọa độ của S phải nghiệm đúng phương trình đường thẳng.
Khi đó: 0.4 + m.0,3 = 1,5 ⇔ m = 5
Vậy với m = 5 thì đường thẳng 0x + my = 1,5 đi qua S(4; 0,3)
g. Điểm A(2; -3) thuộc đường thẳng (m – 1)x + (m + 1)y = 2m +1 nên tọa độ của A phải nghiệm đúng phương trình đường thẳng.
Khi đó ta có: (m – 1).2 + (m + 1).(-3) = 2m + 1
⇔ 2m – 2 – 3m – 3 = 2m + 1 ⇔ 3m + 6 = 0 ⇔ m = -2
Vậy với m = -2 thì đường thẳng (m – 1)x + (m + 1)y = 2m + 1 đi qua A(2; -3).
Bài 4 trang 6 Sách bài tập Toán 9 Tập 2: Phương trình nào sau đây xác định một hàm số dạng y = ax + b.
a. 5x – y = 7; b. 3x + 5y = 10;
c. 0x + 3y = -1; d. 6x – 0y = 18.
Lời giải:
a. Ta có: 5x – y = 7 ⇔ y = 5x – 7
Xác định hàm số dạng y = ax + b với a = 5, b = -7
b. Ta có: 3x + 5y = 10 ⇔ 5y = -3x + 10 ⇔
Xác định hàm số dạng y = ax + b với a = - 3/5 , b = 2.
c. Ta có: 0x + 3y = -1 ⇔ 3y = -1 ⇔ y = - 1/3
Xác định hàm số dạng y = ax + b với a = 0, b = - 1/3
d. Ta có: 6x – 0y = 18 ⇔ 6x = 18 ⇔ x = 3
Phương trình không thuộc dạng y = ax + b.
Bài 5 trang 6 Sách bài tập Toán 9 Tập 2: Phải chọn a và b như thế nào để phương trình ax + by = c xác định một hàm số bậc nhất của biến x?
Lời giải:
Ta có: ax + by = c ⇔
Để phương trình ax + by = c xác định một hàm số bậc nhất của biến x thì a ≠ 0 và b ≠ 0.
.............................
Bài 8 trang 6 Sách bài tập Toán 9 Tập 2: Hãy kiểm tra xem mỗi cặp số sau có phải là một nghiệm của hệ phương trình tương ứng hay không?
a. (-4; 5)
b. (3; -11)
c. (1,5; 2), (3; 7)
d. (1; 8)
Lời giải:
a. Thay x = -4, y = 5 vào từng phương trình của hệ:
7.(-4) – 5.5 = -28 – 25 = -53
-2.(-4) + 9.5 = 8 + 45 = 53
Vậy (-4; 5) là nghiệm của hệ phương trình
b. Thay x = 3, y = -11 vào từng phương trình của hệ:
0,2.3 + 1,7.(-11) = 0,6 – 18,7 = -18,1
3,2.3 – 1.(-11) = 9,6 + 11 = 20,6
Vậy (3; -11) là nghiệm của hệ phương trình
c. * Thay x = 1,5, y = 2 vào từng phương trình của hệ:
10.1,5 – 3.2 = 15 – 6 = 9
-5.1,5 + 1,5.2 = -7,5 + 3 = -4,5
Vậy (1,5; 2) là nghiệm của hệ phương trình
* Thay x = 3, y = 7 vào từng phương trình của hệ:
10.3 – 3.7 = 30 – 21 = 9
-5.3 + 1,5.7 = -15 + 10,5 = -4,5
Vậy (3; 7) là nghiệm của hệ phương trình
d. Thay x = 1, y = 8 vào từng phương trình của hệ:
5.1 + 2.8 = 5 + 16 = 21 ≠ 9
Vậy (1; 8) không là nghiệm của hệ phương trình
Bài 9 trang 7 Sách bài tập Toán 9 Tập 2: Hãy biểu diễn y qua x ở mỗi phương trình (nếu có thể) rồi đoán nhận số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao (không vẽ đồ thị).
Lời giải:
cắt nhau vì chúng có hệ số góc khác nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
Vì đường thẳng y = 3 song song với trục hoành còn đường thẳng cắt hai trục tọa độ nên chúng cắt nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
Vì đường thẳng x = - 5/3 song song với trục tung còn đường thẳng cắt hai trục tọa độ nên chúng cắt nhau.Vậy hệ phương trình có một nghiệm duy nhất.
Vì hai đường thẳng có hệ số góc đều bằng 3 nhưng tung độ gốc khác nhau (-1 ≠ - 5/2 ) nên chúng song song với nhau.
Vậy hệ phương trình vô nghiệm.
Bài 10 trang 7 Sách bài tập Toán 9 Tập 2: Cho phương trình 3x – 2y = 5
a. Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có nghiệm duy nhất.
b. Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ vô nghiệm.
c. Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có vô số nghiệm.
Lời giải:
Ta có: 3x – 2y = 5 ⇔
a. Để được một hệ có nghiệm duy nhất thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc khác 3/2 .
Chẳng hạn: ⇔ -x + 2y = 4
Khi đó ta có hệ có một nghiệm duy nhất.
b. Để được một hệ vô nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc khác - 5/2 .
Chẳng hạn: ⇔ 3x – 2y = 3
Khi đó ta có hệ vô nghiệm.
c. Để được một hệ có vô số nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc bằng - 5/2 .
Chẳng hạn: ⇔ 6x – 4y = 10
Khi đó ta có hệ có vô số nghiệm.
Bài 11 trang 7 Sách bài tập Toán 9 Tập 2: Dựa vào vị trí tương đối giữa hai đường thẳng dưới đây, hãy tìm mối liên hệ giữa các hằng số a, b, c và các hằng số a’, b’, c’ để hệ phương trình
a. Có nghiệm duy nhất
b. Vô nghiệm
c. Có vô số nghiệm
Áp dụng:
a. Lập một hệ hai phương trình bậc nhất hai ẩn có nghiệm duy nhất.
b. Lập một hệ hai phương trình bậc nhất hai ẩn vô nghiệm.
c. Lập một hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm.
Lời giải:
Xét các trường hợp:
1. a, b, a’, b’ ≠ 0
Ta có:
Bài 12 trang 8 Sách bài tập Toán 9 Tập 2: Minh họa hình học tập nghiệm của mỗi hệ phương trình sau:
Lời giải:
a. *Ta có: 2x + 3y = 7
Cho x = 0 thì y = 7/3 ⇒ (0; 7/3 )
Cho y = 0 thì x = 7/2 ⇒ (7/2 ; 0)
*Ta có: x – y = 6 ⇔ y = x – 6
Cho x = 0 thì y = -6 ⇒ (0; -6)
Cho y = 0 thì x = 6 ⇒ (6; 0)
Hai đường thẳng cắt nhau tại M(5; -1) nên nghiệm của hệ phương trình là (x; y) = (5; -1)
Đồ thị: hình a.
b. *Ta có: 3x + 2y = 13
Cho x = 0 thì y = 13/2 ⇒ (0; 13/2 )
Cho y = 0 thì x = 13/3 ⇒ (13/3 ; 0)
*Ta có: 2x – y = -3 ⇔ y = 2x + 3
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = - 3/2 ⇒ (- 3/2 ; 0)
Hai đường thẳng cắt nhau tại N(1; 5) nên nghiệm của hệ phương trình là (x; y) = (1; 5).
Đồ thị: hình b.
c. *Ta có: x + y = 1 ⇔ y = -x + 1
Cho x = 0 thì y = 1 ⇒ (0; 1)
Cho y = 0 thì x = 1 ⇒ (1; 0)
*Ta có: 3x + 0y = 12 ⇔ x = 4
Hai đường thẳng cắt nhau tại P(4; -3) nên nghiệm của hệ phương trình là (x; y) = (4; -3)
Đồ thị: hình c.
d. *Ta có: x + 2y = 6
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = 6 ⇒ (6; 0)
*Ta có: 0x – 5y = 10 ⇔ y = -2
Hai đường thẳng cắt nhau tại Q(10; -2) nên nghiệm của hệ phương trình là (x; y) = (10; -2)
Đồ thị: hình d.
.............................
Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:
- Giải bài tập Toán 9
- Chuyên đề Toán 9 (có đáp án - cực hay)
- Lý thuyết & 500 Bài tập Toán 9 (có đáp án)
- Các dạng bài tập Toán 9 cực hay
- Đề thi Toán 9
- Đề thi vào 10 môn Toán
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán 9 hay, chi tiết của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 & Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều