Sách bài tập Toán 9 Ôn tập chương 2 phần Đại số
Sách bài tập Toán 9 Ôn tập chương 2 phần Đại số
Bài 30 trang 69 Sách bài tập Toán 9 Tập 1: a. Với những giá trị nào của m thì hàm số y = (m + 6)x – 7 đồng biến?
b. Với những giá trị nào của k thì hàm số y = (-k + 9)x – 7 nghịch biến?
Lời giải:
a. Hàm số y = (m + 6)x – 7 đồng biến khi hệ số a > 0
Ta có: m + 6 > 0 ⇔ m > -6
Vậy với m > -6 thì hàm số y = (m + 6)x – 7 đồng biến
b. Hàm số y = (-k + 9)x – 7 nghịch biến khi hệ số a < 0
Ta có: -k + 9 < 0 ⇔ k > 9
Vậy với k > 9 thì hàm số y = (-k + 9)x – 7 nghịch biến.
Bài 31 trang 69 Sách bài tập Toán 9 Tập 1: Với những giá trị nào của m thì đồ thị của các hàm số:
y = 12x + (5 – m) và y = 3x + (3 + m)
cắt nhau tại một điểm trên trục tung?
Lời giải:
Hai đường thẳng y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung nghĩa là chúng có cùng tung độ góc.
Suy ra: 5 – m = 3 + m ⇔ 2m = 2 ⇔ m = 1
Vậy với m = 1 thì đồ thị của các hàm số y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung.
Bài 32 trang 70 Sách bài tập Toán 9 Tập 1: Tìm giá trị của a để hai đường thẳng:
y = (a – 1)x + 2 và y = (3 – a)x + 1 song song với nhau.
Lời giải:
Hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 có tung độ gốc khác nhau do vậy chúng song song với nhau khi và chỉ khi chúng có hệ số a bằng nhau.
Ta có: a – 1 = 3 – a ⇔ 2a = 4 ⇔ a = 2
Vậy với a = 2 thì hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 song song với nhau.
Bài 33 trang 70 Sách bài tập Toán 9 Tập 1: Với điều kiện nào của k và m thì hai đường thẳng sau trùng nhau?
y = kx + (m – 2)
y = (5 – k)x + (4 – m)
Lời giải:
Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi k = 5 – k và m – 2 = 4 – m
Ta có: k = 5 – k ⇔ 2k = 5 ⇔ k = 2,5
m – 2 = 4 – m ⇔ 2m = 6 ⇔ m = 3
Vậy với k = 2,5 và m = 3 thì hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau.
Bài 34 trang 70 Sách bài tập Toán 9 Tập 1: Cho đường thẳng y = (1 – 4m)x + m – 2 (d)
a. Với giá trị nào của m thì đường thẳng (d) đi qua gốc tọa độ?
b. Với giá trị nào của m thì đường thẳng (d) tạo với trục Ox một góc nhọn? Một góc tù?
c. Tìm giá trị của m để đường thẳng (d) cắt trục tung tại một điểm có tung độ bằng 3/2
d. Tìm giá trị của m để đường thẳng (d) cắt trục hoành tại một điểm có hoành độ bằng 1/2
Lời giải:
a. Đồ thị hàm số bậc nhất y = (1 – 4m)x + m – 2 đi qua gốc tọa độ khi 1 – 4m ≠ 0 và m – 2 = 0
Ta có: 1 – 4m ≠ 0 ⇔ m ≠ 1/4
m – 2 = 0 ⇔ m = 2
Vậy với m = 2 thì (d) đi qua gốc tọa độ.
b. Đường thẳng (d) tạo với trục Ox một góc nhọn khi hệ số góc của đường thẳng là số dương.
Ta có: 1 – 4m > 0 ⇔ m < 1/4
Đường thẳng (d) tạo với trục Ox một góc tù khi hệ số góc của đường thẳng là số âm.
Ta có: 1 – 4m < 0 ⇔ m > 1/4
Vậy với m < 1/4 thì đường thẳng (d) tạo với trục Ox một góc nhọn, với m > 1/4 thì đường thẳng (d) tạo với trục Ox một góc tù.
- Vẽ đồ thị hàm số y = -(x + 1)
Cho x = 0 thì y = -1. Ta có: (0; -1)
Cho y = 0 thì x = -1. Ta có: (-1; 0)
Đồ thị hàm số y = -(x + 1) đi qua hai điểm (0; -1) và (-1; 0)
c. Ta có: y = x và y = x + 1 song song với nhau.
y = -x và y = -(x + 1) song song với nhau.
Suy ra chỉ có đồ thị hàm số y = -x và y = x + 1 cắt nhau.
Phương trình hoành độ giao điểm:
-x = x + 1 ⇔ 2x = -1 ⇔ x = - 1/2
Suy ra phương trình |x| = |x + 1| có một nghiệm duy nhất.
Tung độ giao điểm: y = -x ⇒ y = 1/2
Vậy tọa độ giao điểm của đường thẳng y = |x| và y = |x + 1| là:
I(- 1/2 ; 1/2 )
Bài 35 trang 70 Sách bài tập Toán 9 Tập 1: Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
a) Đường thẳng (d) đi qua hai điểm A(-1;2), B(3; -4);
b) Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - √2 và cắt trục hoành tại điểm có hoành độ 2 + √2.
c) Đường thẳng (d) cắt đường thẳng y = 1/2x - 3/2;
d) Đường thẳng (d) song song với đường thẳng y = (-3)/2x + 1/2;
e) Đường thẳng (d) trùng với đường thẳng y = 2x – 3.
Lời giải:
a) Đường thẳng y = (m – 2)x + n (d) đi qua hai điểm A(-1;2) và B(3; -4). Khi đó tọa độ các điểm A, B thỏa mãn (d), nghĩa là:
2 = (m – 2)(-1) + n (1)
và -4 = (m – 2).3 + n (2)
Rút gọn hai phương trình (1) và (2), ta được
-m + n = 0; (1’)
3m + n = 2. (2’)
Từ (1’) suy ra n = m. Thay vào (2’), ta có 3m + 3 = 2 suy ra m = 1/2.
Trả lời: Khi m = n = 1/2 thì (d) đi qua hai điểm A và B đã cho.
b) Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - √2 nên ta có n = 1 - √2.
Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2 + √2 nên ta có:
Trả lời: Khi n = 1 - √2 và thì đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - √2 và cắt trục hoành tại điểm có hoành độ 2 + √2.
c) Ta có: y = 0,5x – 1,5. (d1)
Đường thẳng (d) và (d1) khi m – 2 ≠ 0,5, còn n lấy giá trị tùy ý. Suy ra (d) cắt (d1) khi m ≠ 2,5 còn n tùy ý.
Trả lời: (d) cắt (d2) khi m ≠ 2,5 còn n tùy ý.
d) Ta có: y = -1,5x + 0,5. (d2)
Đường thẳng (d): y = (m – 2)x + n song song với (d2) khi:
m – 2 = -1,5 và n ≠ 0,5
hay m = 0,5 và n ≠ 0,5.
Trả lời: (d) song song với (d2) khi m = 0,5 và n ≠ 0,5.
e) Ta có: y = 2x – 3 (d3)
Đường thẳng (d) trùng với (d3) khi m – 2 = 2 và n = -3
Hay m = 4 và n = -3.
Trả lời: Khi m = 4 và n = -3 thì hai đường thẳng (d) và (d3) trùng nhau.
Bài 36 trang 70 Sách bài tập Toán 9 Tập 1: a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ:
y = 3x + 6; (1) y = 2x + 4 (2)
y = x + 2; (3) y = 1/2x + 1. (4)
b) Gọi giao điểm của các đường thẳng (1), (2), (3), (4) với trục là A và với trục tung lần lượt là B1, B2, B3, B4 ta có (B1 Ax) = α1; ∠(B2 Ax) = α2; ∠(B3 Ax) = α3; ∠(B4 Ax) = α4. Tính các góc α1, α2, α3, α4.
(Hướng dẫn: Dùng máy tính bỏ túi CASIO fx – 220 hoặc CASIO fx – 500A hoặc CASIO fx – 500MS… Tính tgα1, tgα2, tgα3, tgα4 rồi tính ra các góc tương ứng).
c) Có nhận xét gì về độ dốc của các đường thẳng (1), (2), (3) và (4) ?
Lời giải:
a) - Đồ thị của hàm số y = 3x + 6 là đường thẳng đi qua hai điểm A(-2;0) và B1(0;6).
- Đồ thị của hàm số y = 2x + 4 là đường thẳng đi qua hai điểm A(-2;0) và B2(0;4).
- Đồ thị của hàm số y = x + 2 là đường thẳng đi qua hai điểm A(-2;0) và B3(0;2).
- Đồ thị của hàm số y = 1/2x + 1 là đường thẳng đi qua hai điểm A(-2;0) và B4(0;1).
b) Gọi ∠(B1Ax) = α1, ∠(B2Ax) = α2, ∠(B3 Ax) = α3, ∠(B4 Ax) = α4. Dùng máy tính bỏ túi CASIO fx – 220 tính tgα1, tgα2, tgα3, tgα4 và suy ra các góc tương ứng.
Ta có:
tgα1 = 3 ⇒ α1 ≈ 71o33’54,18’’.
tgα2 = 2 ⇒ α2 ≈ 63o26’5,82’’.
tgα3 = 1 ⇒ α3 ≈ 45o.
tgα4 = 1/2 ⇒ α4 ≈ 26o33’54,18’’.
c) Từ sự tăng dần của các hệ số góc: 1/2 < 1 < 2 < 3 và sự tăng dần của các góc α:
26o33’ < 45o < 63o26’ < 71o33’,
Rút ra nhận xét:
Với a > 0, khi a càng lớn thì góc tạo bởi đường thẳng y = ax + b và tia Ox càng lớn, và do đó độ dốc của đường thẳng (so với trục nằm ngang Ox càng lớn).
Bài 37 trang 71 Sách bài tập Toán 9 Tập 1:
a) Cho các điểm M(-1; -2), N(-2; -4), P(2; -3), Q(3; -4,5). Tìm tọa độ của các điểm M’, N’, P’, Q’ lần lượt đối xứng với các điểm M, N, P, Q qua trục Ox.
b) Vẽ đồ thị của các hàm số sau trên cùng một hệ trục tọa độ:
y = |x|;
y = |x + 1|.
c) Tìm tọa độ giao điểm của đồ thị của các hàm số y = |x| và y = |x + 1|.
Từ đó, suy ra phương trình |x| = |x + 1| có nghiệm duy nhất.
Lời giải:
a) (h.25)
Gọi M’, N’, P’, Q’ là các điểm lần lượt đối xứng qua các điểm M, N, P, Q qua trục Ox, ta thấy rằng hoành độ của các điểm đối xứng nhau qua trục hoành bằng nhau, còn tung độ của các điểm đó thì đối nhau: M’(-1; 2); N’(-2; 4); P’(2; 3); Q’(3; 4,5).
b) (h.26)
Ta vẽ đồ thị y = x với x ≥ 0.
Vẽ đồ thị y = -x với x ≤ 0.
Ta vẽ đồ thị y = x + 1 với x ≥ -1
Vẽ đồ thị y = -x – 1 với x ≤ -1.
c) (h.26) Đồ thị y = -x cắt đồ thị y = x + 1 tại điểm M(xo, yo). Vì M thuộc cả hai đồ thị nên tọa độ của M phải thỏa mãn các hàm số, nghĩa là:
y
Đồ thị y = |x| và đồ thị y = |x + 1| chỉ cắt nhau tại một điểm duy nhất M((-1)/2; 1/2).
Suy ra phương trình |x| = |x + 1| chỉ có nghiệm duy nhất x = (-1)/2.
Bài 38 trang 71 Sách bài tập Toán 9 Tập 1: Cho các hàm số:
y = 2x – 2 (d1)
y = - (4/3).x – 2 (d2)
y = (1/3).x + 3 (d3)
a. Vẽ đồ thị các hàm số đã cho trên cùng một mặt phẳng tọa độ.
b. Gọi giao điểm của đường thẳng (d3) với (d1) và (d2) theo thứ tự là A và B. Tìm tọa độ của A, B.
c. Tính khoảng cách AB.
Lời giải:
a. *Vẽ đồ thị hàm số y = 2x – 2 (d1)
Cho x = 0 thì y = -2. Ta có: (0; -2)
Cho y = 0 thì 2x – 2 = 0 ⇔ 2x = 2 ⇔ x = 1. Ta có: (1; 0)
Đồ thị hàm số đi qua hai điểm (0; -2) và (1; 0)
*Vẽ đồ thị hàm số y = - (4/3).x – 2 (d2)
Cho x = 0 thì y = -2. Ta có: (0; -2)
Cho y = 0 thì - (4/3).x – 2 = 0 ⇔ x = -1,5. Ta có: (-1,5; 0)
Đồ thị hàm số đi qua hai điểm (0; -2) và (-1,5; 0)
*Vẽ đồ thị hàm số y = (1/3).x + 3 (d3)
Cho x = 0 thì y = 3. Ta có: (0; 3)
Cho y = 0 thì (1/3).x + 3 = 0 ⇔ x = -9. Ta có: (-9; 0)
Đồ thị hàm số đi qua hai điểm (0; 3) và (-9; 0)
b. Phương trình hoành độ giao điểm của (d1) và (d3):
2x – 2 = (1/3).x + 3 ⇔ 2x - (1/3).x = 3 + 2 ⇔ (5/3).x = 5 ⇔ x = 3
Tung độ giao điểm: y = 2.3 – 2 ⇔ y = 6 – 2 = 4
Vậy tọa độ điểm A là A(3; 4)
Phương trình hoành độ giao điểm của (d2) và (d3):
- (4/3).x – 2 = (1/3).x + 3 ⇔ (1/3).x + (4/3).x = -2 – 3 ⇔ (5/3).x = -5 ⇔ x = -3
Tung độ giao điểm: y = (1/3).(-3) + 3 ⇔ y = -1 + 3 = 2
Vậy tọa độ điểm B là B(-3; 2)
c. Ta có: AB2 = (xA – xB)2 + (yA – yB)2 = (3 + 3)2 + (4 – 2)2 = 40
AB = √40 = 2√10 .
Xem thêm Video Giải sách bài tập Toán lớp 9 (SBT Toán 9) hay và chi tiết khác:
- Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2: Tỉ số lượng giác của góc nhọn
- Bài 3: Bảng lượng giác
- Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông
Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:
- Giải bài tập Toán 9
- Chuyên đề Toán 9 (có đáp án - cực hay)
- Lý thuyết & 500 Bài tập Toán 9 (có đáp án)
- Các dạng bài tập Toán 9 cực hay
- Đề thi Toán 9
- Đề thi vào 10 môn Toán
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán 9 hay, chi tiết của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 & Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều