Giải Toán 10 trang 40 Tập 1 Kết nối tri thức

Với Giải Toán 10 trang 40 Tập 1 trong Bài 6: Hệ thức lượng trong tam giác Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 40.

Giải Toán 10 trang 40 Tập 1 Kết nối tri thức

Luyện tập 2 trang 40 Toán 10 Tập 1: Cho tam giác ABC có b = 8, c = 5 và B^=800. Tính số đo các góc, bán kính đường tròn ngoại tiếp và độ dài các cạnh còn lại của tam giác.

Lời giải:

Quảng cáo

Xét ΔABC, có:

Theo định lý sin, ta có:

asinA=bsinB=csinC=2R

asinA=8sin80°=5sinC=2R

2R=8sin80°8,12R4,06

Ta có: 5sinC=8sin80°8,12sinC58,120,62C^38°

Áp dụng định lí tổng ba góc trong tam giác, ta có: A^+B^+C^=180°

Do đó, A^=180°B^C^180°80°38°62°

Lại có: asin62°8,12a7,17.

Vậy R ≈ 4,06; a ≈ 7,17; C^38°,A^62°

Luyện tập 3 trang 40 Toán 10 Tập 1: Giải tam giác ABC, biết b = 32, c = 45, A^=870.

Lời giải:

Quảng cáo


Giải tam giác ABC, biết b = 32, c = 45, góc A = 87 độ

Xét ΔABC, có:

Theo định lý Cos, ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

= 322 + 452 – 2.32.45.cos870 ≈ 2898,27

BC ≈ 53,84

Theo định lí Sin, ta có:

asinA=bsinB=csinC=2R

53,84sin870=32sinB=45sinC

53,84sin870=32sinB

sinB=0,59B^=36,40

C^=56,60

Vậy B^=36,40,C^=56,60 và BC = 53,84.

Vận dụng 2 trang 40 Toán 10 Tập 1: Từ một khu vực có thể quan sát hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách giữa hai đỉnh núi đó. Hãy thảo luận để đưa ra các bước cho một cách đo.

Lời giải:

Quảng cáo

Bước 1: Tại khu vực quan sát, đặt một cọc tiêu cố định tại vị trí A. Kí hiệu hai đỉnh núi lần lượt là điểm B và điểm C.

Đứng tại A, ngắm điểm B và điểm C để đo góc tạo bởi hai hướng ngắm đó (góc BAC).

Bước 2: Đo khoảng cách từ vị trí ngắm đến từng đỉnh núi, tức là tính AB, AC.

* Tính AB bằng cách:

+ Đứng tại A, ngắm đỉnh núi B để xác định góc ngắm so với mặt đất, kí hiệu là góc α.

+ Theo hướng ngắm, đặt tiếp cọc tiêu tại D gần đỉnh núi hơn và đo đoạn AD. Xác định góc ngắm tại điểm D, kí hiệu là góc β.

Ta có hình vẽ:

Từ một khu vực có thể quan sát hai đỉnh núi, ta có thể ngắm

Ta có: ADB^=180°β ; DBA^=βα.

Áp dụng định lí sin vào ∆ABD, ta được: ABsinADB^=DAsinDBA^

AB=sinADB^.DAsinDBA^AB=sin(180°β).DAsin(βα)

* Tương tự ngắm và đo để xác định AC.

Ta có: AEC^=180oδ; ECA^=δγ

Áp dụng định lí sin vào ∆ACE, ta được: ACsinAEC^=AEsinACE^

AC=sinAEC^  .  AEsinACE^

AC=sin(180oδ).AEsin(δγ).

Bước 3: Tính khoảng cách giữa hai đỉnh núi, bằng cách áp dụng định lí côsin cho tam giác ABC để tính độ dài cạnh BC.

Ta có: BC2 = AB2 + AC2 – 2AB.AC.cosBAC.

Với AB, AC, góc BAC đã biết ở các bước trên, thay vào ta tính được BC chính là khoảng cách giữa hai đỉnh núi.

Lời giải bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên