Giải Toán 12 trang 78 Tập 2 Cánh diều

Với Giải Toán 12 trang 78 Tập 2 trong Bài 2: Phương trình đường thẳng Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 78.

Giải Toán 12 trang 78 Tập 2 Cánh diều

Quảng cáo

Bài 1 trang 78 Toán 12 Tập 2: Đường thẳng đi qua điểm A(3; 2; 5) nhận u=2;8;7 làm vectơ chỉ phương có phương trình tham số là:

Bài 1 trang 78 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

Đáp án đúng là: D

Quảng cáo

Đường thẳng đi qua điểm A(3; 2; 5) nhận u=2;8;7 làm vectơ chỉ phương có phương trình tham số là: x=32ty=2+8tz=57t (t là tham số).

Bài 2 trang 78 Toán 12 Tập 2: Đường thẳng đi qua điểm B(– 1; 3; 6) nhận u=2;3;8 làm vectơ chỉ phương có phương trình chính tắc là:

Bài 2 trang 78 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Quảng cáo

Lời giải:

Đáp án đúng là: B

Đường thẳng đi qua điểm B(– 1; 3; 6) nhận u=2;3;8 làm vectơ chỉ phương có phương trình chính tắc là: x12=y33=z68x+12=y33=z68

Bài 3 trang 78 Toán 12 Tập 2: Mặt phẳng (P): x – 2 = 0 vuông góc với mặt phẳng nào sau đây?

A. (P1): x + 2 = 0.

B. (P2): x + y – 2 = 0.

C. (P3): z – 2 = 0.

D. (P4): x + z – 2 = 0.

Lời giải:

Đáp án đúng là: C

Các vectơ nP=1;0;0,n1=1;0;0,n2=1;1;0,n3=0;0;1,n4=1;0;1 lần lượt là các vectơ pháp tuyến của các mặt phẳng (P), (P1), (P2), (P3), (P4).

Quảng cáo

Ta có nPn1=1;  nPn2=1;  nPn3=0;  nPn4=1. Suy ra nPn3

Vậy mặt phẳng (P) vuông góc với mặt phẳng (P3).

Bài 4 trang 78 Toán 12 Tập 2: Cho đường thẳng ∆ có phương trình tham số x=1ty=3+2tz=1+3t (t là tham số).

a) Chỉ ra tọa độ hai điểm thuộc đường thẳng ∆.

b) Điểm nào trong hai điểm C(6; – 7; – 16), D(– 3; 11; – 11) thuộc đường thẳng ∆?

Lời giải:

a) Với t = 0 ta có x=1y=3z=1. Suy ra A(1; 3; – 1) ∈ ∆.

Với t = 1 ta có x=1y=3z=1. Suy ra B(0; 5; 2) ∈ ∆.

b) Thay tọa độ điểm C(6; – 7; – 16) vào phương trình đường thẳng ∆ ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do đó, C ∈ ∆.

Thay tọa độ điểm D(– 3; 11; – 11) vào phương trình đường thẳng ∆ ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do đó, D ∉ ∆.

Vậy trong hai điểm C và D, chỉ có điểm C thuộc đường thẳng ∆.

Bài 5 trang 78 Toán 12 Tập 2: Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆ trong mỗi trường hợp sau:

a) ∆ đi qua điểm A(– 1; 3; 2) và có vectơ chỉ phương u=2;3;4;

b) ∆ đi qua điểm M(2; – 1; 3) và N(3; 0; 4).

Lời giải:

a)

+ Phương trình tham số của đường thẳng ∆ đi qua điểm A(– 1; 3; 2) và có vectơ chỉ phương u=2;3;4 là: x=12ty=3+3tz=2+4t (t là tham số).

+ Phương trình chính tắc của đường thẳng ∆ đi qua điểm A(– 1; 3; 2) và có vectơ chỉ phương u=2;3;4 là: x+12=y33=z24.

b) Ta có MN=1;1;1 là một vectơ chỉ phương của đường thẳng ∆.

+ Phương trình tham số của đường thẳng ∆ là: x=2+t'y=1+t'z=3+t'(t' là tham số).

+ Phương trình chính tắc của đường thẳng ∆ là: x21=y+11=z31.

Lưu ý: Ở ý b này, ta có thể lấy điểm N làm điểm mà đường thẳng ∆ đi qua để viết phương trình tham số và phương trình chính tắc của ∆.

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác