Giải Toán 12 trang 79 Tập 2 Cánh diều

Với Giải Toán 12 trang 79 Tập 2 trong Bài 2: Phương trình đường thẳng Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 79.

Giải Toán 12 trang 79 Tập 2 Cánh diều

Quảng cáo

Bài 6 trang 79 Toán 12 Tập 2: Xác định vị trí tương đối của hai đường thẳng ∆1, ∆2 trong mỗi trường hợp sau:

Bài 6 trang 79 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

a) Đường thẳng ∆1 đi qua điểm M1(1; 2; 3) và có u1=2;1;1 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(– 11; – 6; 10) và có u2=6;3;3 là vectơ chỉ phương.

Ta có3u1=u2, suy ra u1, u2 cùng phương;

M1M2=12;8;712281 nên u1,  M1M2 không cùng phương.

Vậy ∆1 // ∆2.

Quảng cáo

b) Đường thẳng ∆1 đi qua điểm M1(1; 2; 3) và có u1=3;4;5 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(– 3; – 6; 15) và có u2=1;2;3 là vectơ chỉ phương.

Ta có:3142, suy ra u1, u2 không cùng phương;

M1M2=4;8;12, u1,u2=4523;5331;3412=22;14;2.

Do u1,u2M1M2= (– 22) ∙ (– 4) + 14 ∙ (– 8) + 2 ∙ 12 = 0 nên u1,u2,M1M2 đồng phẳng.

Vậy ∆1 cắt ∆2.

c) Đường thẳng ∆1 đi qua điểm M1(– 1; 1; 0) và có u1=4;3;1 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(1; 3; 1) và có u2=1;2;2 là vectơ chỉ phương.

Quảng cáo

Ta có: M1M2=2;2;1,u1,u2=3122;1421;4312=4;7;5.

Do u1,u2M1M2= 4 ∙ 2 + (– 7) ∙ 2 + 5 ∙ 1 = – 1 ≠ 0 nên u1,u2,M1M2không đồng phẳng.

Vậy ∆1 và ∆2 chéo nhau.

Bài 7 trang 79 Toán 12 Tập 2: Tính góc giữa hai đường thẳng ∆1, ∆2 trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):

Bài 7 trang 79 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Quảng cáo

Lời giải:

a) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=1;3;0,u2=3;1;0.

Ta có: cos (∆1, ∆) = 13+31+0012+32+0232+12+02=234=32.

Suy ra (∆1, ∆) = 30°.

b) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=2;1;1, u2=3;1;2.

Ta có: cos (∆1, ∆) = 23+11+1222+12+1232+12+22=9614=32114.

Suy ra (∆1, ∆) ≈ 11°.

c) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=1;1;1u2=1;3;1.

Ta có: cos (∆1, ∆) = 11+13+1112+12+1212+32+12=1311=3333.

Suy ra (∆1, ∆) ≈ 80°.

Bài 8 trang 79 Toán 12 Tập 2: Tính góc giữa đường thẳng ∆ và mặt phẳng (P) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):

a) Δ:x=1+3ty=2z=3+t (t là tham số) và (P):3x + z – 2 = 0;

b) Δ:x=1+ty=2tz=3+t (t là tham số) và (P): x + y + z – 4 = 0.

Lời giải:

a) Đường thẳng ∆ có vectơ chỉ phương là u=3;0;1 và mặt phẳng (P) có vectơ pháp tuyến là n=3;0;1. Ta thấy vectơ chỉ phương của ∆ đồng thời là vectơ pháp tuyến của (P), do đó ∆ ⊥ (P), suy ra (∆, (P)) = 90°.

b) Đường thẳng ∆ có vectơ chỉ phương là u=1;1;1 và mặt phẳng (P) có vectơ pháp tuyến là n=1;1;1.

Ta có sin (∆, (P)) = 11+11+1112+12+1212+12+12=13.

Suy ra (∆, (P)) ≈ 19°.

Bài 9 trang 79 Toán 12 Tập 2: Tính góc giữa hai mặt phẳng

(P1): x + y + 2z – 1 = 0 và (P2): 2x – y + z – 2 = 0.

Lời giải:

Do (P1), (P2) có hai vectơ pháp tuyến lần lượt là n1=1;1;2,n2=2;1;1 nên

cos ((P1), (P2)) = 12+11+2112+12+2222+12+12=366=12.

Suy ra ((P1), (P2)) = 60°.

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên