Giải Toán 12 trang 44 Tập 2 Chân trời sáng tạo

Với Giải Toán 12 trang 44 Tập 2 trong Bài 2: Phương trình đường thẳng trong không gian Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 44.

Giải Toán 12 trang 44 Tập 2 Chân trời sáng tạo

Quảng cáo

Hoạt động khám phá 1 trang 44 Toán 12 Tập 2: Trong không gian Oxyz, cho điểm M0 cố định và vectơ a khác 0. Có bao nhiêu đường thẳng d đi qua M0 và song song hoặc trùng với giá của a.

Hoạt động khám phá 1 trang 44 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Có một đường thẳng d đi qua M0 và song song hoặc trùng với giá của a.

Thực hành 1 trang 44 Toán 12 Tập 2: Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.

Lời giải:

Thực hành 1 trang 44 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Quảng cáo

Ta có AB=6;3;2 là một vectơ chỉ phương của đường thẳng AB.

AA'=3;7;8 là một vectơ chỉ phương của đường thẳng BB' vì AA' // BB'.

AC=3;0;1 là một vectơ chỉ phương của đường thẳng A'C' vì AC // A'C'.

Hoạt động khám phá 2 trang 44 Toán 12 Tập 2: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M0(x0; y0; z0) cố định và có vectơ chỉ phương là a=a1;a2;a3 khác 0.

a) Giải thích tại sao ta có thể viết: M ∈ d ⇔ M0M=ta,t

b) Với M(x; y; z) thuộc d, hãy tính x, y, z theo x0, y0, z0 và a1, a2, a3.

Hoạt động khám phá 2 trang 44 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) Ta có M ∈ d thì M0M cùng phương với a. Do đó M0M=ta,t.

b) Ta có M0M=xx0;yy0;zz0.

M0M=ta nên xx0=a1tyy0=a2tzz0=a3tx=x0+a1ty=y0+a2tz=z0+a3t,t.

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng trong không gian hay khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên