Căn bậc hai và căn thức bậc hai (Lý thuyết Toán lớp 9) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 9 Bài 7: Căn bậc hai và căn thức bậc hai sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 9 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.
Căn bậc hai và căn thức bậc hai (Lý thuyết Toán lớp 9) | Kết nối tri thức
Lý thuyết Căn bậc hai và căn thức bậc hai
1. Căn bậc hai
• Căn bậc hai của số thực không âm a là số thực x sao cho x2 = a.
Ví dụ: Căn bậc hai của 16 là 4 và −4 vì 42 = (−4)2 = 16.
Tính chất:
• với mọi số thực a.
Ví dụ: Ta có nên căn bậc hai của 81 là 9 và −9.
Nhận xét:
• Số âm không có căn bậc hai.
• Số 0 có một căn bậc hai duy nhất là 0.
• Số dương a có đúng hai căn bậc hai đối nhau là (căn bậc hai số học của a) và .
2. Căn thức bậc hai
• Căn thức bậc hai là biểu thức có dạng , trong đó A là một biểu thức đại số. A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.
• xác định khi A lấy giá trị không âm và ta thường viết là A ≥ 0. Ta nói A ≥ 0 là điều kiện xác định (hay điều kiện có nghĩa) của
Ví dụ: Tìm điều kiện xác định của căn thức
Hướng dẫn giải
Điều kiện xác định của căn thức là 5 – 2x ≥ 0 hay
Hằng đẳng thức :
Tương tự như căn bậc hai của một số thực không âm, với A là một biểu thức, ta cũng có:
• Với A ≥ 0 ta có
•
Ví dụ: Rút gọn biểu thức với x < 0:
Hướng dẫn giải
Từ giả thiết x < 0 suy ra 1 – x > 0.
Áp dụng hằng đẳng thức ∀ A ≥ 0, ta có:
Bài tập Căn bậc hai và căn thức bậc hai
Bài 1. Tìm căn bậc hai của mỗi số sau (làm tròn đến chữ số thập phân thứ hai):
a) 0,25;
b)
Hướng dẫn giải
a) Ta có mà nên 0,25 có hai căn bậc hai là 0,5 và −0,5.
b) Ta có nên có hai căn bậc hai là 0,44 và −0,44.
Bài 2. Tìm điều kiện xác định của và tính giá trị của căn thức tại x = 5.
Hướng dẫn giải
Xét căn thức
Điều kiện xác định của căn thức là 2x – 9 ≥ 0 hay
Tại x = 5 (thỏa mãn điều kiện xác định) căn thức có giá trị là
Bài 3. Rút gon các biểu thức sau:
a)
b) với x < 3.
Hướng dẫn giải
a) Áp dụng hằng đẳng thức ta có
Vì suy ra ∀ x.
b) Áp dụng hằng đẳng thức bình phương của một hiệu và hằng đẳng thức ta có
Do giả thiết x < 3 suy ra x – 3 < 0 nên
Vì vậy với x < 3.
Bài 4. Tìm giá trị của x, biết:
a) x2 + 36 = 0;
b)
c)
Hướng dẫn giải
a) Xét biểu thức: x2 + 36 = 0 hay x2 = −36
Suy ra biểu thức vô nghiệm vì x2 ≥ 0 ∀x.
b) Xét căn thức
Điều kiện xác định của căn thức là x ≥ 0.
Ta có:
(thỏa mãn điều kiện)
Vậy
c) Xét căn thức
Điều kiện xác định của căn thức là x2 – 6x + 9 =(x – 3)2 ≥ 0 ∀x.
Suy ra căn thức có nghĩa với mọi x.
Ta có:
x – 3 = 4 hoặc x – 3 = –4
x = 7 hoặc x = –1
Vậy x ∈ {−1; 7}.
Học tốt Căn bậc hai và căn thức bậc hai
Các bài học để học tốt Căn bậc hai và căn thức bậc hai Toán lớp 9 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 9 Chân trời sáng tạo hay khác:
Lý thuyết Toán 9 Bài 8: Khai căn bậc hai với phép nhân và phép chia
Lý thuyết Toán 9 Bài 9: Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Kết nối tri thức (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT