Bài tập về Quy tắc trọng tâm tam giác của vecto (cực hay, chi tiết)
Bài viết Bài tập về Quy tắc trọng tâm tam giác của vecto với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập về Quy tắc trọng tâm tam giác của vecto.
Bài tập về Quy tắc trọng tâm tam giác của vecto (cực hay, chi tiết)
A. Phương pháp giải
Trọng tâm tam giác là giao điểm của ba đường trung tuyến.
Áp dụng quy tắc trọng tâm tam giác:
Điểm G là trọng tâm tam giác ABC thì ta có:
với mọi điểm M bất kỳ.
B. Ví dụ minh họa
Ví dụ 1: Cho G và G’ lần lượt là trọng tâm của hai tam giác ABC và A’B’C’. Chứng minh rằng .
Hướng dẫn giải:
Do G là trọng tâm của tam giác ABC nên ta có:
Do G’ là trọng tâm tam giác A’B’C’ và có điểm G nên ta có:
Ví dụ 2: Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?
Hướng dẫn giải:
Gọi M là trung điểm của BC nên ta có:
Vì G là trọng tâm của tam giác ABC
Nên (tính chất trọng tâm trong tam giác)
Suy ra B đúng, A,C, D sai.
Đáp án B
Ví dụ 3: Cho tam giác ABC có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của BC, CA và AB. Chọn khẳng định sai?
Hướng dẫn giải:
+ Vì G là trọng tâm tam giác ABC và P là trung điểm của AC nên ta có GC = 2 GP mà vecto ngược hướng
Do đó: D sai.
Giải thích A, B, C đúng:
+ Do G là trọng tâm tam giác ABC
Suy ra B đúng.
+ Do M, N, P lần lượt là trung điểm của BC, CA, AB và G là trọng tâm của tam giác ABC
Thay vào (1) ta được:
thay vào (2) ta được:
Đáp án D
Ví dụ 4: Cho tam giác ABC có G là trọng tâm. Xác định điểm M sao cho:
A. Điểm M là trung điểm cạnh AC
B. Điểm M là trung điểm cạnh GC
C. Điểm M chia đoạn AB theo tỉ số 4
D. Điểm M chia đoạn GC thỏa mãn
Hướng dẫn giải:
+ Do G là trọng tâm tam giác ABC và M là một điểm bất kỳ
Theo giả thiết ta lại có:
Do đó ta được:
Suy ra G, M, C thẳng hàng và M khác trung điểm của AB (2)
Vậy M chia đoạn GC thỏa mãn D đúng.
+ Từ (1) suy ra M khác trung điểm của GC (vì nếu M là trung điểm của GC thì mâu thuẫn (1)) B sai.
+ Từ (2) suy ra A và C sai vì A, M, C không thẳng hàng, do đó M không thể là trung điểm AC và A, M , B không thẳng hàng nên M không thể chia AB theo tỷ số 4.
Đáp án D
Ví dụ 5: Điều kiện nào sau đây không phải là điều kiện cần và đủ để G là trọng tâm của tam giác ABC, với M là trung điểm của BC.
Hướng dẫn giải:
+ Ta có:
A, M, G thẳng hàng và ngược hướng với vecto , do đó G nằm giữa M và A
Mặt khác M là trung điểm BC và MA = 3GM ()
Vậy G là trọng tâm tam giác ABC A đúng.
+ Ta có: G là trọng tâm của tam giác ABC (theo lý thuyết)
D đúng.
+ C sai, do nếu G là trọng tâm tam giác ABC
Nên không phải là điều kiện để G là trọng tâm tam giác ABC.
Đáp án C
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Bài tập về Quy tắc trung điểm của vecto (cực hay, chi tiết)
- Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)
- Bài tập Tọa độ của vecto, tọa độ của một điểm (cực hay, chi tiết)
- Tìm m để hai vecto cùng phương (cực hay, chi tiết)
- Cách tìm tọa độ trung điểm của đoạn thẳng (cực hay, chi tiết)
- Cách tìm tọa độ của trọng tâm tam giác (cực hay, chi tiết)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều