Tìm m để hai vecto cùng phương (cực hay, chi tiết)
Bài viết Tìm m để hai vecto cùng phương với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm m để hai vecto cùng phương.
Tìm m để hai vecto cùng phương (cực hay, chi tiết)
A. Phương pháp giải
• Áp dụng điều kiện để hai vecto cùng phương để giải bài tập dạng này.
Điều kiện cần và đủ để hai vecto ( # 0) cùng phương là có một số k để .
Nhận xét: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k khác 0 để
• Áp dụng trong hệ tọa độ:
Cho = (a1; a2) và = (b1; b2), với b1; b2 # 0
Khi đó nếu có: cùng phương.
B. Ví dụ minh họa
Ví dụ 1: Cho . Tìm m để hai vecto cùng phương.
Hướng dẫn giải:
Để hai vecto cùng phương tồn tại số k thỏa mãn
Từ (2) suy ra k = 2 thay vào (1) ta được:
Vậy m = -1 và m = 2 thì hai vecto cùng phương.
Ví dụ 2: Cho hai vecto . Tìm m để hai vecto cùng phương.
Hướng dẫn giải:
Ta có là các vecto đơn vị với
Suy ra
Hai vecto cùng phương
Vậy m = thì thỏa mãn yêu cầu bài toán.
Ví dụ 3: Cho tam giác ABC có E là trung điểm của BC, I là trung điểm của AB. Gọi D, J, K lần lượt là các điểm thỏa mãn . Tìm m để A, K, D thẳng hàng.
Hướng dẫn giải:
Ba điểm A, K, D thẳng hàng tồn tại k để (1)
Ta phân tích các vecto theo hai vecto
+ E là trung điểm của BC
Suy ra
Ta có
Do đó (2)
+ Lại có: I là trung điểm AB
Ta có:
Do đó (3)
Từ (1), (2) và (3) suy ra
Vậy m = thì ba điểm A, K, D thẳng hàng.
Ví dụ 4: Cho hai vecto . Giá trị của m để hai vecto cùng phương là:
Hướng dẫn giải:
Ta có và là các vecto đơn vị với
Suy ra
Hai vecto cùng phương tồn tại k để
Vậy m = .
Đáp án D
Ví dụ 5: Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m-1; 2); B(2; 5-2m) và C(m-3; 4). Giá trị của m để 3 điểm A, B, C thẳng hàng là
A. m = 3
B. m = 2
C. m = -2
D. m = 1
Hướng dẫn giải:
Ta có: = (2 - m + 1;5 -2m - 2) = (3 - m;3 - 2m)
= (m - 3 - m + 1;4 - 2) = (-2;2)
Ba điểm A, B, C thẳng hàng tồn tại k sao cho
Vậy m = 2 thì 3 điểm A, B, C thẳng hàng.
Đáp án B
C. Bài tập tự luyện
Bài 1. Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m – 1; 2); B(2; 5 – 2m) và C(m – 3; 4). Tìm giá trị của m để 3 điểm A, B, C thẳng hàng.
Bài 2. Cho hai vecto và . Tìm m để hai vecto trên cùng phương.
Bài 3. Cho hai vecto và . Giá trị của m để hai vecto trên cùng phương.
Bài 4. Cho và . Tìm m để hai vecto trên cùng phương.
Bài 5. Cho tam giác ABC có E là trung điểm của BC, I là trung điểm của AB. Gọi D, J, K lần lượt là các điểm thỏa mãn ; ; . Tìm m để A, K, D thẳng hàng.
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Bài tập về Quy tắc trọng tâm tam giác của vecto (cực hay, chi tiết)
- Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)
- Bài tập Tọa độ của vecto, tọa độ của một điểm (cực hay, chi tiết)
- Cách tìm tọa độ trung điểm của đoạn thẳng (cực hay, chi tiết)
- Cách tìm tọa độ của trọng tâm tam giác (cực hay, chi tiết)
- Tìm tọa độ điểm thỏa mãn điều kiện cho trước (cực hay, chi tiết)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều