Các bài toán về phép quay và cách giải



Với Các bài toán về phép quay và cách giải môn Toán lớp 11 sẽ giúp học sinh nắm vững lý thuyết, biết phương pháp làm các dạng bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi Toán 11.

Các bài toán về phép quay và cách giải

                               Các bài toán về phép quay và cách giải

I. Lý thuyết ngắn gọn

1. Cho điểm O và góc lượng giác α. Phép biến hình biến O thành chính nó và biến mỗi điểm M khác O thành điểm M′ sao cho OM′ = OM và góc lượng giác (OM;OM') = α được gọi là phép quay tâm O, α được gọi là góc quay

Kí hiệu: Q(O;α)             

Khi α = 2kπ, k ∈ Z thì Q(O;α) là phép đồng nhất

Khi α = (2k+ 1)π, k ∈ Z thì Q(O;α)  là phép đối xứng tâm O

2. Trong mặt phẳng Oxy, giả sử M (x; y) và M'(x',y') = Q(O;α) (M) thì  

Các bài toán về phép quay và cách giải

Trong mặt phẳng Oxy, giả sử M (x; y) và I (a; b) và M'(x',y') = Q(O;α) (M) thì 

Các bài toán về phép quay và cách giải 

3. Các tính chất của phép quay:
- Bảo toàn khoảng cách giữa hai điểm bất kì
- Biến một đường thẳng thành đường thẳng
- Biến một đoạn thẳng thành đoạn thẳng bằng đoạn đã cho
- Biến một tam giác thành tam giác bằng tam giác đã cho
- Biến đường tròn thành đường tròn có cùng bán kính

II. Các dạng toán về phép quay

Dạng 1: Xác định ảnh của một hình qua phép quay
 Phương pháp giải:
Sử dụng định nghĩa phép quay, biểu thức tọa độ của phép quay và các tính chất của phép quay

Ví dụ 1: Tìm ảnh của điểm A (3; 4) qua phép quay tâm O góc quay 900 

Lời giải

Với phép quay tâm O góc 90 độ điểm A thành A’(x; y) có tọa độ thỏa mãn:

Các bài toán về phép quay và cách giải 

Do α = 900 > 0 phép quay theo chiều dương suy ra: A’ (-4; 3)

Ví dụ 2: Trong mặt phẳng Oxy cho điểm M (2; 0) và đường thẳng d: x + 2y – 2 = 0. Xét phép quay Q tâm O góc quay 900   

a. Tìm ảnh của điểm M qua phép quay Q
b. Tìm ảnh của d qua phép quay Q

Lời giải

a. Ta có vì Các bài toán về phép quay và cách giải 

b. Ta có M(2;0) ∈ d, ảnh của M qua phép quay Q theo câu a là M’ (0; 2)

Gọi d’ là ảnh của d qua Q ta có d’ là đường thẳng qua M’ và vuông góc với d

Đường thẳng d có VTPT là Các bài toán về phép quay và cách giải suy ra d’ có VTPT là Các bài toán về phép quay và cách giải 

Vậy phương trình của d’ là: 2(x - 0) - 1(y - 2) = 0 ⇔ 2x - y + 2 = 0 

Dạng 2: Sử dụng phép quay để giải các bài toán dựng hình

Phương pháp giải: Xem điểm cần dựng là giao của một đường có sẵn và ảnh của một đường khác qua phép quay Q(I;α) nào đó

Ví dụ 3: Cho hai đường thẳng a, b và điểm C không nằm trên chúng. Hãy tìm trên a và b lần lượt hai điểm A và B sao cho tam giác ABC là tam giác đều

Lời giải

Các bài toán về phép quay và cách giải

Nếu xem B là ảnh của A qua phép quay tâm C góc quay 60° thì B sẽ là giao của đường thẳng b với đường thẳng a’ là ảnh của a qua phép quay nói trên

Số nghiệm của bài toán là số giao điểm của đường thẳng b với đường thẳng a’

Ví dụ 4: Cho điểm A và hai đường thẳng d1,d2. Dựng tam giác ABC vuông cân tại A sao cho B ∈ d1, C ∈ d2 

Lời giải

- Dựng đường thẳng d'2 là ảnh của d2 qua Q(A;-900) 

- Dựng giao điểm B = d1 ∩ d'2 

- Dựng đường thẳng qua A vuông góc với AB cắt d2 tại C

Tam giác ABC là tam giác cần dựng

Nhận xét:

- Nếu d1,d2 không vuông góc thì bài toán có một nghiệm hình

- Nếu d⊥ d2 và A nằm trên đường phân giác của một trong các góc tạo bởi d1,d2 thì bài toán có vô số nghiệm hình

- Nếu d⊥ d2 và A không nằm trên đường phân giác của một trong các góc tạo bởi d1,d2 thì bài toán vô nghiệm hình

Dạng 3: Sử dụng phép quay để giải các bài toán tập hợp điểm

Phương pháp giải: Xem điểm cần dựng là giao của một đường có sẵn và ảnh của một đường khác qua phép quay Q(I;α) nào đó. Để tìm tập hợp điểm M′ ta đi tìm tập hợp điểm M mà Q(I;α) nào đó biến điểm M thành điểm M′, khi đó nếu M ∈ (H) thì (M') ∈ (H') = Q(I;α)((H))

Ví dụ 5: Cho đường tròn (O, R), A là một điểm cố định không trùng với tâm O, BC là một dây cung của (O), BC di động nhưng số đo của cung BC luôn bằng 1200.Gọi I là trung điểm của BC, vẽ tam giác đều AIJ. Tìm tập hợp điểm J

Lời giải

Các bài toán về phép quay và cách giải

Ta có I là trung điểm của BC và cung BC = 1200 

Nên OI ⊥ BC và Các bài toán về phép quay và cách giải 

Xét tam giác OIB có:

Các bài toán về phép quay và cách giải 

Do đó tập hợp các điểm I là đường tròn (γ)  tâm O bán kính Các bài toán về phép quay và cách giải 

Mặt khác, tam giác AIJ đều nên ta có
Các bài toán về phép quay và cách giải  

Mà tập hợp các điểm I là đường tròn (γ) nên tập hợp các điểm J là hai đường tròn 1)2) với:

Các bài toán về phép quay và cách giải 

1) là đường tròn tâm (O1) , bán kính Các bài toán về phép quay và cách giải

2) là đường tròn tâm (O2) , bán kính Các bài toán về phép quay và cách giải

Ví dụ 6: Cho đường thẳng a và một điểm G không nằm trên a. Với mỗi điểm A nằm trên a ta dựng tam giác đều ABC có tâm G. Tìm quỹ tích các điểm BC khi A di động trên a

Lời giải

Các bài toán về phép quay và cách giải

Do tam giác ABC đều và có tâm G nên phép quay tâm G góc quay 1200 biến A thành B hoặc C và phép quay tâm G góc quay 2400 biến A thành B hoặc C

A ∈ a nên B, C thuộc các đường thẳng là ảnh của a trong hai phép quay nói trên

Vậy quỹ tích các điểm BC là các đường thẳng ảnh của a trong hai phép quay tâm G góc quay 12002400 

                               Các bài toán về phép quay và cách giải

Dạng 4: Sử dụng phép quay để giải các bài toán hình học phẳng

Ví dụ 7: Cho hai tam giác vuông cân OAB và OA'B' có chung đỉnh O sao cho O nằm trên đoạn thẳng AB' và nằm ngoài đoạn thẳng A'B. Gọi G và G' lần lượt là trọng tâm các tam giác OAA' và OBB'. Chứng minh rằng GOG' là tam giác vuông cân

Lời giải

Xét phép quay Q tâm O góc quay 900, ta có:

Các bài toán về phép quay và cách giải 

Vậy, ta được tam giác GOG' là tam giác vuông cân

Các bài toán về phép quay và cách giải

Ví dụ 8: Cho tam giác ABC, dựng ở ngoài tam giác ấy hai hình vuông ABDE và BCKF. Gọi P là trung điểm cạnh AC, H là điểm đối xứng của D qua B, M là trung điểm đoạn FH

a. Xác định ảnh của hai vectơ Các bài toán về phép quay và cách giải trong phép quay tâm B góc 900 

b. Chứng minh rằng DF = 2BP và DF vuông góc với BP

Lời giải

Các bài toán về phép quay và cách giải

a. Ta có: Các bài toán về phép quay và cách giải  

Các bài toán về phép quay và cách giải 

b. Vì P là trung điểm của AC nên theo tính chất của phép quay ta có ảnh của P qua phép quay trên trung điểm M của HF

Các bài toán về phép quay và cách giải 

Mặt khác: Các bài toán về phép quay và cách giải 

III. Bài tập áp dụng

Bài 1:  Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ta dựng các hình vuông ABDE và ACFH. Gọi I là trung điểm của cạnh BCE

a. Chứng minh rằng AE = CD

b. Gọi I, J lần lượt là trung điểm của AE và CD. Chứng minh rằng tam giác BIJ là một tam giác đều

Bài 2: Cho nửa đường tròn tâm O đường kính BC. Điểm A chạy trên nửa đường tròn đó. Dựng về phía ngoài của tam giác ABC hình vuông ABEF. Chứng minh rằng E chạy trên một nửa đường tròn cố định

Bài 3: Trong mặt phẳng toạ độ Oxy cho điểm A (3; 4). Hãy tìm toạ độ điểm A’ là ảnh của A qua phép quay tâm O góc 900 

Bài 4:  Cho hình vuông ABCD tâm O. M là trung điểm của AB, N là trung điểm của OA. Tìm ảnh của tam giác AMN qua phép quay tâm O góc 900

Bài 5: Cho tam giác ABC. Dựng về phía ngoài của tam giác các hình vuông BCIJ, ACMN, ABEF và gọi O, P, Q lần lượt là tâm đối xứng của chúng

a. Gọi D là trung điểm của AB. Chứng minh rằng DOP là tam giác vuông cân đỉnh D

b. Chứng minh AO vuông góc với PQ và AO = PQ

Bài 6: Dựng tam giác đều biết ba đỉnh nằm trên bốn cạnh của một hình bình hành cho trước

Bài 7: Trong mặt phẳng Oxy, cho điểm B (-3; 6). Tìm tọa độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay -900 

Bài 8: Cho hình vuông tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay α, 0 < α ≤ 2π biến hình vuông trên thành chính nó?

A. 1

B. 2

C. 3

D. 4

Bài 9: Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M (2; 0) và điểm N (0; 2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là bao nhiêu?
Bài 10: Trong mặt phẳng Oxy cho điểm A (3; 0). Tìm tọa độ ảnh A' của điểm A qua phép quay Q0900 

IV. Bài tập tự luyện

Bài 1: Trong mặt phẳng Oxy, cho điểm B (−3; 6). Tìm tọa độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay (−90°).

A. E(−6; −3).

B. E(−3; −6).

C. E(6; 3).

D. E(3; 6).

Bài 2. Tìm ảnh của N(1; -3) qua phép quay tâm O góc quay -90°?

Bài 3. Trong mặt phẳng Oxy cho điểm M (2; 0) và đường thẳng d: x + 2y – 2 = 0. Xét phép quay Q tâm O góc quay 90°.

a. Tìm ảnh của điểm M qua phép quay Q.

b. Tìm ảnh của d qua phép quay Q.

Bài 4. Trong mặt phẳng Oxy phép quay Q(O; 60°) biến đường thẳng d có phương trình x - 2y = 0 thành đường thẳng d’ có phương trình?

Bài 5. Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x - 3)2 + y2 = 4. Phép quay tâm O(0; 0) góc quay 90° biến (C) thành (C’) có phương trình?

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phep-doi-hinh-va-phep-dong-dang-trong-mat-phang.jsp


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên