Lý thuyết Hàm số lượng giác lớp 11 (hay, chi tiết)
Bài viết Lý thuyết Hàm số lượng giác lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hàm số lượng giác.
Lý thuyết Hàm số lượng giác
Bài giảng: Bài 1: Hàm số lượng giác (tiết 1) - Thầy Lê Thành Đạt (Giáo viên VietJack)
I. TÓM TẮT LÝ THUYẾT:
1. Hàm số sin và hàm số cosin
a) Hàm số sin
- Định nghĩa:
Quy tắc đặt tương ứng mỗi số thực x đối với số thực sin x
sin: R → R
x → y = sin x
được gọi là hàm số sin, kí hiệu là: y = sinx.
- Tập xác định của hàm số sin là R.
- Là hàm số lẻ.
b) Hàm số côsin
- Định nghĩa:
Quy tắc đặt tương ứng mỗi số thực x đối với số thực cos x
cos: R → R
x → y = cos x
được gọi là hàm số cosin, kí hiệu là: y = cos x.
- Tập xác định của hàm số cosin là R.
- Là hàm số chẵn.
2. Hàm số tang và hàm số cotang
a) Hàm số tang
- Định nghĩa: Hàm số tang là hàm số được xác định bới công thức: (cos x ≠ 0)
- Kí hiệu là y = tan x
- Tập xác định của hàm số y = tan x là D = R\{π/2 + kπ, k ∈ Z}.
- Là hàm số lẻ.
b) Hàm số cotang
- Định nghĩa:
Hàm số cotang là hàm số được xác định bới công thức: (sin x ≠ 0)
- Kí hiệu là y = cot x
- Tập xác định của hàm số y = cot x là D = R\{kπ, k ∈ Z}.
- Là hàm số lẻ.
3. Tính tuần hoàn của hàm lượng giác
- Các hàm số y = sin x và y = cos x là những hàm số tuần hoàn với chu kì 2π.
- Các hàm số y = tan x và y = cot x là những hàm số tuần hoàn với chu kì π.
4. Sự biến thiên và đồ thị của hàm số lượng giác
a) Hàm số y = sin x
- Sự biến thiên và đồ thị hàm số y = sin x trên đoạn [0; π]:
Hàm số y = sin x đồng biến trên [0; π/2] và nghịch biến trên [π/2; π]
- Lưu ý: Vì y = sin x là hàm số lẻ nên lấy đối xứng đồ thị hàm số trên đoạn [0; π] qua gốc tọa độ O, ta được đồ thị hàm số trên đoạn [–π; 0]
- Đồ thị hàm số y = sin x trên R: Tịnh tiến liên tiếp đồ thị hàm số trên đoạn [–π; π] theo các vecto v→ = (2π; 0) và –v→ = (–2π; 0)
- Tập giá trị của hàm số y = sin x là [–1; 1]
b) Hàm số y = cos x
- Bằng cách tịnh tiến đồ thị hàm số y = sin x theo vectơ u→ = (-π/2; 0), ta được đồ thị của hàm số y = cos x.
- Hàm số y = cos x đồng biến trên [–π; 0] và nghịch biến trên [0; π]
- Tập giá trị của hàm số y = cos x là [–1; 1]
c) Hàm số y = tan x
- Hàm số y = tan x đồng biến trên [0; π/2 )
- Đồ thị hàm số có tâm đối xứng là gốc tọa độ O
=> Lấy đối xứng qua tâm O đồ thị hàm số y = tan x trên [0; π/2 ), ta được đồ thị hàm số y = tan x trên (–π/2; 0]
- Tịnh tiến đồ thị hàm số trên khoảng (–π/2 ; π/2) songsong với trục hoành từng đoạn có độ dài π, ta được đồ thị hàm số y = tan x trên D.
Tập giá trị của hàm số y = tan x là khoảng (–∞; +∞)
d) Hàm số y = cot x
- Hàm số y = cot x nghịch biến trên khoảng (0; π)
- Tịnh tiến đồ thị hàm số trên khoảng (0; π) song song với trục hoành từng đoạn có độ dài π, ta được đồ thị hàm số y = cot x trên D.
- Tập giá trị của hàm số y = cot x là khoảng (–∞; +∞)
Bài giảng: Bài 1: Hàm số lượng giác (tiết 2) - Thầy Lê Thành Đạt (Giáo viên VietJack)
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Phương trình lượng giác cơ bản
- Lý thuyết Một số phương trình lượng giác thường gặp
- Lý thuyết Tổng hợp chương Hàm số lượng giác - phương trình lượng giác
- Lý thuyết Quy tắc đếm
- Lý thuyết Hoán vị - Chỉnh hợp - Tổ hợp
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều