Lý thuyết Phép đối xứng tâm lớp 11 (hay, chi tiết)
Bài viết Lý thuyết Phép đối xứng tâm lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phép đối xứng tâm.
Lý thuyết Phép đối xứng tâm
Bài giảng: Bài 4: Phép đối xứng tâm - Thầy Lê Thành Đạt (Giáo viên VietJack)
1. Định nghĩa
Cho điểm I. Phép biến hình biến điểm I thành chính nó, biến mỗi điểm M khác I thành M’ sao cho I là trung điểm của MM’ được gọi là phép đối xứng tâm I.
Điểm I được gọi là tâm đối xứng.
Phép đối xứng tâm I thường được kí hiệu là ĐI.
Nếu hình H là ảnh của hình H qua ĐI thì ta còn nói H đối xứng với H’ qua tâm I, hay H và H’ đối xứng với nhau qua I.
Từ đinh nghĩa suy ra M = ĐI(M) ⇔ IM'→ = - IM→
2. Biểu thức toạ độ
Với O(0;0), ta có M(x’; y’) = ĐO[M(x;y)] thì
Với I(a; b), ta có M(x’; y’) = ĐI(x’; y’) thì
3. Tính chất
Tính chất 1
Nếu ĐI(M) = M’ và ĐI(N) = N thì M'N'→ = – MN→, từ đó suy ra M’N’ = MN.
Tính chất 2
Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
4. Tâm đối xứng của một hình
Định nghĩa
Điểm I được gọi là tâm đối xứng của hình H nếu phép đối xứng tâm I biến hình H thành chính nó.
Khi đó ta nói H là hình có tâm đối xứng.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Phép quay
- Lý thuyết Khái niệm về phép dời hình và hai hình bằng nhau
- Lý thuyết Phép vị tự
- Lý thuyết Phép đồng dạng
- Lý thuyết Tổng hợp chương Phép dời hình và phép đồng dạng trong mặt phẳng
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều