Cách tìm giới hạn của dãy số bằng định nghĩa cực hay



Bài viết Cách tìm giới hạn của dãy số bằng định nghĩa với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm giới hạn của dãy số bằng định nghĩa.

Cách tìm giới hạn của dãy số bằng định nghĩa cực hay

< h3 class="sub-title">A. Phương pháp giải & Ví dụ
Quảng cáo

- Để chứng minh limun = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un|<a ∀n > na.

- Để chứng minh limun = 1 ta chứng minh lim(un-1) = 0.

- Để chứng minh limun = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M ∀n > nM.

- Để chứng minh limun = -∞ ta chứng minh lim(-un) = +∞

- Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất.

Ví dụ minh họa

Bài 1: Chứng minh rằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Chứng minh rằng dãy số (un ) : un = (-1)n không có giới hạn.

Hướng dẫn:

Ta có: u2n = 1 ⇒ limu2n = 1; u(2n+1) = -1 ⇒ limu(2n+1) = -1

Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy (un) không có giới hạn.

Quảng cáo

Bài 3: Chứng minh các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với mọi số thực dương M lớn tùy ý, ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với mọi M > 0 lớn tùy ý, ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Chứng minh rằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 5: Chứng minh các giới hạn sau

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với mọi a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với mọi số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Quảng cáo

Bài 6: Dùng định nghĩa tìm các giới hạn sau :

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy A = 2

2. Với số thực a > 0 nhỏ tùy ý, ta chọn na thỏa mãn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy C = 1

Bài 7: Chứng minh rằng dãy số (un): un = (-1)n không có giới hạn.

Hướng dẫn:

Ta có: u2n → +∞; u(2n+1) = -(2n+1) → -∞

Do đó dãy số đã cho không có giới hạn.

Bài 8: Chứng minh các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Gọi m là số tự nhiên thỏa: m+1 > |a|. Khi đó với mọi n > m+1

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Từ đó suy ra: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Nếu a = 1 thì ta có đpcm

+ Giả sử a > 1. Khi đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

+ Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tóm lại ta luôn có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với a > 0.

B. Bài tập vận dụng

Bài 1: Dãy số nào sau đây có giới hạn khác 0 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: C

Cách 1.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án = lim⁡1 + lim(1/n) = 1 + 0 = 1

Đáp án C

Cách 2 (phương pháp loại trừ). Từ các định lí ta thấy:

Các dãy ở phương án A,B đều bằng 0, do đó loại phương án A,B

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó loại phương án D

Chọn đáp án C

Quảng cáo

Bài 2: Dãy số nào sau đây có giới hạn bằng 0 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: D

Cách 1. Dãy (1/3)n có giới hạn 0 vì |q| < 1 thì limqn = 0. Đáp án là D

Cách 2. Các dãy ở các phương án A,B,C đều có dạng limqn nhưng |q| > 1 nên không có giưới hạn 0, do đó loại phương án A,B,C. Chọn đáp án D

Bài 3: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: D

Cách 1. Chia tử và mẫu xủa phân tử cho n (n là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), ta được

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là D

Cách 2. Sử dụng nhận xét:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

khi tính limun ta thường chia tử và mẫu của phân thức cho nk (nk là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), từ đó được kết quả:

Nếu m < p thì limun = 0. Nếu m = p thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Nếu m > p thì limun = +∞ nếu am.bp > 0; limun = -∞ nếu am.bp < 0

Vì tử và mẫu của phân thức đã cho đều có bậc 1 nên kết quả

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó chọn đáp án là D

Bài 4: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

Cách 1. Sử dụng nhận xét trên, vì bậc của tử thức nhỏ hơn bậc của mẫu thức nên kết quả

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là A

Cách 2. Chia tử và mẫu của phân thức cho n4(n4 là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức) rồi tính. Đáp án A

Bài 5: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: B

Cách 1. Sử dụng nhận xét trên, vì bậc của tử thức lớn hơn bậc của mẫu thức, hệ số luỹ thừa bậc cao nhất của n cả tử và mẫu là số dương nên kết quả

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là B

Cách 2. Chia tử và mẫu của phân thức cho n4(n4 là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức) rồi tính. Đáp án B

Bài 6: Dãy số nào sau đây có giưới hạn bằng 1/5 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

Cách 1. Tính được Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Suy ra đáp án là A

Cách 2. . Sử dụng nhận xét trên, vì bậc của tử thức lớn hơn bậc của mẫu thức, hệ số luỹ thừa bậc cao nhất của n cả tử và mẫu thức bằng nhau và tỉ số hệ số của cúng bằng 1/5. Chỉ có dãy ở phương án A thoả mãn. Vậy đáp án là A.

Bài 7: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: B

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 8: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

chia cả tử thức và mẫu thức cho √n

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 9: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: B

Trước hết tính

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là B

Bài 10: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: D

Chia cả tử thức mẫu thức cho n, ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án D

Bài 11: lim⁡(-3n3 + 2n2 - 5) bằng:

A. -3         B.0         C. -∞          D. +∞

Lời giải:

Đáp án: C

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

nên lim⁡(-3n3 + 2n2 - 5) = -∞

Đáp án C

Bài 12: Lim( 2n4 + 5n2 - 7n ) bằng:

A. -∞         B.0         C. 2          D. +∞

Lời giải:

Đáp án: D

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án D

Bài 13: Dãy số nào sau đây có giưới hạn là +∞ ?

A. un = 9n2 - 2n5

B. un = n4 - 4n5

C. un = 4n2 - 3n

D. un = n3 - 5n4

Lời giải:

Đáp án: C

Chỉ có dãy un = 4n2 - 3n có giới hạn là +∞, các dãy còn lại đều có giới hạn là -∞.

Đáp án C

Bài 14: Nếu limun = L, un + 9 > 0 ∀n thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng số nào sau đây?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: C

vì limun = L nên lim⁡(un + 9) = L + 9 do đó

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là C

Bài 15: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

A. 0         B.1         C. 2          D. +∞

Lời giải:

Đáp án: B

Cách 1. Chia tử thức và mẫu thức cho n:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là B

Cách 2. Thực chất có thể coi bậc cao nhất của tử thức và mẫu thức là 1, do đó chỉ cần để ý hệ số bậc 1 của tử thức là √4, của mẫu thức là 2, từ đó tính được kết quả bằng 1. Đáp án B

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


gioi-han.jsp


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên