Cách tìm m để hàm số liên tục cực hay



Bài viết Cách tìm m để hàm số liên tục với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm m để hàm số liên tục.

Cách tìm m để hàm số liên tục cực hay

A. Phương pháp giải & Ví dụ

Quảng cáo

Ta sử dụng điều kiện để hàm số liên tục và điều kiện để phương trình có nghiệm để làm các bài toán dạng này.

- Điệu kiện để hàm số liên tục tại x0:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

- Điều kiện để hàm số liên tục trên một tập D là f(x) liên tục tại mọi điểm thuộc D.

- Phương trình f(x) = 0 có ít nhất một nghiệm trên D nếu hàm số y = f(x) liên tục trên D và có hai số a, b thuộc D sao cho f(a).f(b) < 0.

Phương trình f(x) = 0 có k nghiệm trên D nếu hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai ; ai+1) (i = 1,2,…,k) nằm trong D sao cho f(ai).f(ai+1) < 0.

Ví dụ minh họa

Bài 1: Xác định a để hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án liên tục trên R.

Hướng dẫn:

Hàm số xác định trên R

Với x < 2 ⇒ hàm số liên tục

Với x > 2 ⇒ hàm số liên tục

Với x = 2 ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 2

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy a = -1, a = 0.5 là những giá trị cần tìm.

Bài 2: Cho hàm số f(x) = x3 – 1000x2 + 0,01 . phương trình f(x) = 0 có nghiệm thuộc khoảng nào trong các khoảng sau đây ?

I. (–1; 0)            II. (0; 1)            III. (1; 2)

Hướng dẫn:

Ta có hàm số y = f(x) = x3 – 1000x2 + 0,01 là hàm liên tục trên R

f(0) = 0.01 và f(-1) = - 1001 + 0.01 < 0. Nên f(0).(-1) < 0.

Vậy hàm số có nghiệm trong khoảng I

Quảng cáo

Bài 3: Tìm m để các hàm số sau liên tục trên R

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Với x < 0 ⇒ hàm số liên tục

Với x > 0 ⇒ hàm số liên tục

Với x = 0 ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Chứng minh rằng phương trình sau có ít nhất một nghiệm :

x7 + 3x5 - 1 = 0

Hướng dẫn:

Ta có hàm số f(x) = x7 + 3x5 - 1 liên tục trên R và f(0).f(1) = - 3 < 0

Suy ra phương trinh f(x) = 0 có ít nhất một nghiệm thuộc (0,1).

Bài 5: Chứng minh rằng phương trình sau có ít nhất một nghiệm :

x2sinx + xcosx + 1 = 0

Hướng dẫn:

Ta có hàm số f(x) = x2sinx + xcosx + 1 liên tục trên R và f(0).f(π) = -π < 0. Suy ra phương trinh f(x) = 0 có ít nhất một nghiệm thuộc (0 ; π).

Quảng cáo

Bài 6: Xác định a, b để các hàm số sau liên tục trên R

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có hàm số đã cho liên tục trên R\{π/2} do các hàm y = sinx và y = ax + b lên tục trên R.

Ta chỉ cần xét tính liên tục của hàm số tại x = π/2.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy a, b là số thực thỏa mãn phương trình Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án thì hàm số đã cho liên tục trên R.

Bài 7: Tìm m để các hàm số sau liên tục trên R

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Hàm số xác định trên R

Với x < 2 ⇒ hàm số liên tục

Với x > 2 ⇒ hàm số liên tục

Với x = 2 ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

⇔ m = 3

Vậy m = 3 là giá trị cần tìm

Bài 8: Xác định a,b để các hàm số sau liên tục trên R

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Với x ≠ 2 và x ≠ 0 hàm số liên tục.

Để hàm số đã cho liên tục trên R thì hàm số phải liên tục tại x = 2 và x = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy a = 1 và b = -1 thì hàm số liên tục trên R

B. Bài tập vận dụng

Quảng cáo

Bài 1: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với giá trị nào của a thì hàm số f(x) liên tục tại x = - 2?

A. a = -5

B. a = 0

C. a = 5

D. a = 6

Lời giải:

Đáp án: C

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án C

Bài 2: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với giá trị nào của a thì hàm số f(x) liên tục tại x = 3?

A. a = 3             B. a = 1/3            C. a = -1/3            C. a = -2

Lời giải:

Đáp án: B

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 3: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với giá trị nào của m thì hàm số đã cho liên tục tại x = 2?

A. -2

B. -1

C. 1

D. 3

Lời giải:

Đáp án: C

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án C

Bài 4: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Giá trị nào của m để hàm số đã cho liên tục tại x = -2?

A. 7

B. -7

C. 5

D. 1

Lời giải:

Đáp án: A

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 5: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với giá trị nào của a thì hàm số đã cho liên tục tại x = 2?

A. -2

B. -1

C. 1

D. 3

Lời giải:

Đáp án: B

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 6: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hàm số đã cho liên tục trên R khi và chỉ khi:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

Hàm số đã cho liên tục trên R khi và chỉ khi hàm số đó liên tục tại x = 1 và x = -1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 7: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Giá trị của m để f(x) liên tục tại x = 2 là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: C

Hàm số liên tục tại x = 2 khi và chỉ khi

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án C

Bài 8: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tìm b để f(x) liên tục tại x = 3

A. √3            B. - √3            C. (2√3)/3            D. – (2√3)/3

Lời giải:

Đáp án: D

Hàm số liên tục tại x = 3 khi và chỉ khi

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án D

Bài 9: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tìm k để f(x) gián đoạn tại x = 1.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

f(x) gián đoạn tại x = 1 khi và chỉ khi:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 10: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tìm m để f(x) liên tục trên [0;+∞) là.

A.1/3               B. 1/2               C. 1/6               D. 1

Lời giải:

Đáp án: C

f(x) liên tục trên [0;+∞) khi và chỉ khi f(x) liên tục tại x = 0+ và liên tục tại x = 9

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án C

Bài 11: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Giá trị của a để f(x) liên tục trên R là:

A. 1 và 2               B. 1 và –1               C. –1 và 2               D. 1 và –2

Lời giải:

Đáp án: D

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án D

Bài 12: Cho hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tìm a để f(x) liên tục tại x = 0

A. 1               B. –1               C. –2               D. 2

Lời giải:

Đáp án: B

Hàm số liên tục tại x = khi và chỉ khi

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 13: Tìm khẳng định đúng trong các khẳng định sau:

I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) > 0 thì tồn tại ít nhất số c ∈ (a;b) sao cho f(c) = 0

II. f(x) liên tục trên (a;b] và trên [b;c) nhưng không liên tục trên (a;c)

A. Chỉ I đúng             B. Chỉ II đúng             C. Cả I và II đúng             D. Cả I và II sai

Lời giải:

Đáp án: D

Đáp án D

Bài 14: Tìm khẳng định đúng trong các khẳng định sau:

I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm

II. f(x) không liên tục trên [a;b] và f(a).f(b) ≥ 0 thì phương trình f(x) = 0 vô nghiệm

A. Chỉ I đúng             B. Chỉ II đúng             C. Cả I và II đúng             D. Cả I và II sai

Lời giải:

Đáp án: A

Đáp án A

Bài 15: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Chọn câu đúng trong các câu sau:

(I) f(x) liên tục tại x = 2

(II) f(x) gián đoạn tại x = 2

(III) f(x) liên tục trên đoạn [-2, 2]

A. Chỉ (I) và (III)               B. Chỉ (I)               C. Chỉ (II)               D. Chỉ (II) và (III)

Lời giải:

Đáp án: B

TXĐ: D = (-∞, -2] ∪ [2, +∞). Vậy (III) và (II) sai. Đáp án B

C. Bài tập tự luyện

Bài 1. Cho hàm số f(x) = 2x3+ax24x+bx12x1mx=1. Tìm m để hàm số liên tục tại x = 1.

Bài 2. Tìm a để hàm số liên tục tại x = 2, biết f(x) = 4x32x2      ,x2a                        ,x=2.

Bài 3. Tìm m để hàm số liên tục tại x = 2. Biết g(x) = x45x2+4x38      ,x<2ax2+x+1          ,x2.

Bài 4. Tìm a để hàm số y = f(x) = x+2a          ,x<0x2+x+1   ,x0 liên tục tại x = 0.

Bài 5. Tìm m để hàm số sau liên tục tại x = 1: y = f(x) = 3x+12x21  ,x>1mx22x3   ,x1.

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


gioi-han.jsp


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên