Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia. Xem ngay!

Viết phương trình mặt cầu có tâm thuộc đường thẳng d và cắt đường thẳng - Toán lớp 12



Toán lớp 12: Phương pháp tọa độ trong không gian

Viết phương trình mặt cầu có tâm thuộc đường thẳng d và cắt đường thẳng

Dạng bài: Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h.

Phương pháp giải

Gọi M (a; b; c) thuộc Δ, u là một vecto chỉ phương

Khi đó, khoảng cách từ I đến đường thẳng Δ được tính theo công thức:

h=d(I;(d))=Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇒ Tìm được t ⇒ tọa độ điểm I

Gọi R là bán kính mặt cầu

⇒ R2=(l/2)2 +h2

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án, t∈R và Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ,t' ∈ R. Lập phương trình mặt cầu (S) có tâm I ∈∆1, biết Δ2 cắt mặt cầu theo dây cung có độ dài là 8 và I cách Δ2 một khoảng bằng 3

Hướng dẫn:

Tâm I ∈Δ1 nên I(1;-t; -2+t)

Gọi R là bán kính của mặt cầu

⇒ R2 =(l/2)2 +h2 =(8/2)2 +32=25

Ta có: M (3; -2; 0) ∈Δ2, một Vecto chỉ phương của Δ2u=(0;1;1)

IM =(2; -2+t;2-t)

⇒ [IM ; u ]=(t-4;-2;2)

Khi đó, khoảng cách từ I đến Δ2 là:

d(I; Δ2 )Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=3 ⇔ t2 -8t +24 =18

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Với t=4 +√10 thì I(1; -4 -√10;2 +√10)

Với t=4 -√10 thì I(1; -4 +√10;2 -√10)

Vậy phương trình mặt cầu cần tìm là:

(x-1)2 +(y+4 +√10)2 +(z-2-√10)2=25

(x-1)2 +(y+4 -√10)2 +(z-2+√10)2=25

Bài 2: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án , t∈R và Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án , t'∈R. Lập phương trình mặt cầu (S) có tâm I ∈Δ1 và I cách Δ2 một khoảng bằng 3, cho biết mặt phẳng (P): 2x + 2y – 7z = 0 cắt mặt cầu (S) theo một đường tròn giao tuyến có bán kính r = 5.

Hướng dẫn:

Tâm I thuộc Δ1 nên I (t; -t; 0)

Điểm M (5; -2; 0) thuộc Δ2 và một vecto chỉ phương là u=(-2;0;1)

IM=(5-t; -2+t;0)

⇒ [IM ; u ]=(t-2;t-5;2t-4)

Khi đó, khoảng cách từ I đến Δ2 là:

d(I; Δ2 )Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=3 ⇔ 6t2 -30t+45=45

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

+ Điểm I1(0;0;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.

Phương trình mặt cầu là:

x2 +y2 +z2=25

+ Điểm I2 (5; -5;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.

Phương trình mặt cầu là:

(x-5)2 +(y+5)2 +z2=25

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 99K


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác