Viết phương trình mặt cầu có tâm thuộc đường đẳng d và cắt mặt phẳng P - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Phương pháp tọa độ trong không gian

Viết phương trình mặt cầu có tâm thuộc đường đẳng d và cắt mặt phẳng P

Dạng bài: Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h.

Phương pháp giải

Viết phương trình đường thẳng d về dạng tham số:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)

Sử dụng công thức

d(I;(P))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

d(I;(P))=h

⇒ Tìm được t ⇒ Tọa độ tâm

Gọi R là bán kính mặt cầu

⇒ R=√(r2 +h2 )

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho đường thẳng

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

và (P): 2x – y – 2z – 2 = 0. Viết phương trình mặt cầu (S) có tâm I thuộc Δ; I cách (P) một khoảng bằng 2 và (P) cắt mặt cầu (S) theo một đường tròn giao tuyến (C) có bán kính bằng 3.

Hướng dẫn:

Phương trình tham số của Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

I thuộc Δ nên I (-t; -1 + 2t; 1+ t)

Khoảng cách từ I đến mặt phẳng (P) là:

h=d(I;(P))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=|-1-2t|

Theo đề bài, I cách (P) một khoảng bằng 2 nên d(I;(P))=2

⇔ |-1-2t|=2

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi R là bán kính của mặt cầu

Ta có: RToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=√13

Vậy có hai phương trình mặt cầu thỏa mãn là:

(x+1/2)2 +y2 +(z-3/2)2=13

(x-3/2)2 +(y+4)2 +(z-1/2)2=13

Bài 2: Trong không gian Oxyz, cho mặt phẳng (P): 2x – 3y – z – 2 = 0. Viết phương trình mặt cầu (S) có tâm E thuộc tia Ox sao cho mặt phẳng (P) cách E một khoảng bằng √14 và cắt mặt cầu (S) theo thiết diện là đường tròn có đường kính bằng 4.

Hướng dẫn:

Tâm E thuộc tia Ox nên E (a; 0; 0)

Khoảng cách từ E đến mặt phẳng (P) là:

d(E;(P))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Theo giả thiết, khoảng cách từ E đến mặt phẳng (P) bằng √14

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= √14 ⇔ |2a-2|=14

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi R là bán kính mặt cầu

Ta có: R

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= √18

Vậy có 2 phương trình mặt cầu thỏa mãn:

(x-8)2 +y2 +z2=18

(x+6)2 +y2 +z2=18

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác