Viết phương trình mặt cầu có tâm thuộc đường thẳng và tiếp xúc với mặt phẳng



Bài viết Viết phương trình mặt cầu có tâm thuộc đường thẳng và tiếp xúc với mặt phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu có tâm thuộc đường thẳng và tiếp xúc với mặt phẳng.

Viết phương trình mặt cầu có tâm thuộc đường thẳng và tiếp xúc với mặt phẳng

Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Phương pháp giải

Quảng cáo

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))=Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Điều kiện cho trước:

1) Mặt cầu đi qua A cho trước:

Do mặt cầu đi qua A cho trước và tiếp xúc với (P) nên IA = d(I;(P))=R

⇒ Tìm được t ⇒ Tọa độ tâm I và bán kính R

2) Biết bán kính R của mặt cầu

Khi đó d(I;(P))=R

⇒ Tìm được t ⇒ Tọa độ tâm I

3) 2 mặt phẳng cùng tiếp xúc với mặt cầu

Khi đó, cho khoảng cách từ tâm đến các mặt phẳng bằng nhau và cùng bằng bán kính mặt cầu.

Ví dụ minh họa

Bài 1: Cho điểm A (1; 3; 2), đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảivà mặt phẳng (P): 2x – 2y +z – 6 = 0. Phương trình mặt cầu (S) đi qua A, có tâm thuộc d, đồng thời tiếp xúc với (P) là:

Lời giải:

Phương trình đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi I là tâm mặt cầu, do I thuộc d nên I (-1+2t; 4 – t; -2t)

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt cầu đi qua A và tiếp xúc với (P) nên d(I;(P))=IA=R

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇔ 65t2 +110t-175=0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(x-1)2 +(y-3)2 +(z+2)2=16

(x+(83/13))2 +(y -(87/13))2 +(z -(70/13))2=13456/169

Quảng cáo

Bài 2: Cho hai điểm A(1; -2; 3), B(-1; 0; 1) và mặt phẳng (P): x + y + z + 4 =0. Viết phương trình mặt cầu (S) có bán kính AB/6 có tâm thuộc đường thẳng AB và (S) tiếp xúc với mặt phẳng (P)

Lời giải:

AB=(-2;2;-2) ⇒ AB=|AB |=2√3

Gọi R là bán kính của mặt cầu (S). Theo giả thiết ta có:

R=AB/6= √3/3

Đường thẳng AB đi qua A (1; -2; 3) và có một vecto chỉ phương

AB=(-2;2;-2) có phương trình là: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tâm I thuộc đường thẳng AB nên I(1-2t; -2+2t;3-2t)

Khoảng cách từ tâm I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt cầu tiếp xúc với (P) nên d(I;(P))=R

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải⇔ |-2t+6|=1

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với t=5/2 thì I ( -4; 3; -2)

Với t=7/2 thì I ( -6; 5; -4)

Vậy có 2 phương trình mặt cầu thỏa mãn là :

(x+4)2 +(y-3)2 +(z+2)2=1/3

(x+6)2 +(y-5)2 +(z+4)2=1/3

Bài 3: Cho đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảivà hai mặt phẳng (P): x + 2y + 2z – 2 = 0 và (Q): 2x + y + 2z – 1 = 0. Mặt cầu có tâm I nằm trên d và tiếp xúc với 2 mặt phẳng (P) và (Q) có phương trình là?

Lời giải:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

d(I;(Q))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt cầu (S) tiếp xúc với 2 mặt phẳng (P) và (Q) nên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇔ |8t+9|=|9t+9|Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với t=0 thì I(1;2;3);R=3

Với t=-18/17 thì I(-19/17; 16/17; 15/17); R=3/17

Vậy có 2 phương trình mặt cầu thỏa mãn đề bài là:

(x-1)2 +(y-2)2 +(z-3)2=9

(x+(19/17))2 +(y-(16/17))2 +(z-(15/17))2=9/289

Quảng cáo

Bài 4: Cho đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảivà mặt phẳng (P): 2x + y – 2z + 2 = 0. Viết phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A (1; -1; 1)

Lời giải:

Phương trình tham số của đường thẳng d là: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi I là tâm mặt cầu, do I thuộc đường thẳng d nên I(1+3t; -1+t;t)

Khoảng cách từ điểm I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

IA2 =(1+3t-1)2 +(-1+t+1)2 +(t-1)2 =11t2 -2t +1

Do mặt cầu tiếp xúc với (P) và đi qua A nên d(I;(P))=IA

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇔ (5t+3)2 =11t2 -2t +1

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với t = 0, ta có I (1; -1; 0), R = IA = 1

Với t=24/37, ta có I(109/37; (-13)/37; 24/37); R= IA =5929/1369

Theo bài ra, cần viết phương trình mặt cầu có bán kính nhỏ nhất nên viết phương trình mặt cầu có tâm I (1; -1; 0), R = 1

(x-1)2 +(y+1)2 +z2=1

Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


phuong-phap-toa-do-trong-khong-gian.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên