Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng (cực hay)



Bài viết Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng.

Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng (cực hay)

Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Phương pháp giải

Quảng cáo

Do mặt cầu (S) tiếp xúc với mặt phẳng (d) nên khoảng cách từ tâm I đến mặt phẳng (d) bằng bán kính R

Gọi M là điểm bất kì trên d, u là vecto chỉ phương của d. Khi đó, khoảng cách từ I đến d được tính theo công thức:

R=d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu tâm I (1; -2; 3) và tiếp xúc với trục Oy

Lời giải:

Phương trình đường thẳng Oy là Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vecto chỉ phương của Oy là u =(0;1;0)

M (0; 1; 0) ∈ Oy ⇒ IM=(-1;3; -3)

⇒ [IM , u ]=(-3;0;1)

Khoảng cách từ I đến trục Oy là:

d(I;(Oy))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √10

Do mặt cầu tiếp xúc với trục Oy nên khoảng cách từ tâm I đến trục Oy là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+(y+2)2+(z-3)2=10

Quảng cáo

Bài 2: Cho điểm A ( -3; 1; 4) và đường thẳng d có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình mặt cầu tâm A, tiếp xúc với d là:

Lời giải:

Đường thẳng d có VTCP u =(2; 1; -1) và đi qua điểm M (-1; 2; -3)

Ta có: AM=(2;1; -7)

[ AM , u ]=(6; -12;0)

Khoảng cách từ A đến đường thẳng d là:

d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √30

Do mặt cầu tiếp xúc với đường thẳng d nên khoảng cách từ tâm I đến trục d là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x+3)2+(y-1)2+(z-4)2=30

Bài 3: Cho điểm I (0; 1; 2); B (-1; 1; 0) và C (2; -3; 1). Viết phương trình mặt cầu có tâm I và tiếp xúc với đường thẳng BC

Lời giải:

Đường thẳng BC có VTCP BC=(3;-4; 1)

IB=(-1;0; -4)

[IB ; BC ]=(16;11; -4)

Quảng cáo

Khoảng cách từ I đến đường thẳng BC là:

d(I;BC)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt cầu tiếp xúc với đường thẳng BC nên khoảng cách từ I đến đường thẳng BC là bán kính mặt cầu tâm I

Vậy phương trình mặt cầu cần tìm là:

x2+(y-1)2+(z-2)2=393/26

Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


phuong-phap-toa-do-trong-khong-gian.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên