Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Phương pháp tọa độ trong không gian

Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R

Dạng bài: Viết phương trình mặt cầu biết I (a; b; c) và mặt cầu cắt mặt phẳng (P): Ax + By + Cz + D = 0 theo một đường tròn có bán kính r

Phương pháp giải

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khoảng cách từ tâm I đến mặt phẳng P là:

d=d(I;(P))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bán kính R của mặt cầu được tính theo công thức:

R=√(r2+d2 )

Khi đó phương trình mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, cho mặt phẳng (P): 2x + y – 2z + 10 = 0 và điểm I (2; 1; 3). Phương trình mặt cầu (S) tâm I cắt mặt phẳng (P) theo một đường tròn (C) có bán kính bằng 4 là:

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bán kính R của mặt cầu là:

RToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= 5

Phương trình mặt cầu cần tìm là:

(x-2)2+(y-1)2+(z-3)2=25

Bài 2: Cho điểm A (1; 2; 4) và mặt phẳng (P): x + y + z =1. Viết phương trình mặt cầu (S) có tâm A, biết mặt cầu (S) cắt mặt phẳng (P) theo một thiết diện là một đường tròn có chu vi 4π

Hướng dẫn:

Gọi r là bán kính thiết diện

Theo bài ra, đường tròn thiết diện có chu vi 4π

⇒ 2πr = 4π ⇒ r=2

Phương trình mặt phẳng (P): x + y + z – 1 = 0

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= 2√3

Gọi R là bán kính mặt cầu

⇒ R=√(r2+d2 )=4

Phương trình mặt cầu tâm I, bán kính R = 4 là:

(x-1)2+(y-2)2+(z-4)2=16

Bài 3: Cho hai mặt phẳng (P): 5x – 4y + z – 6 = 0, (Q): 2x – y + z + 7 = 0 và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánViết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một đường tròn có diện tích là 20π.

Hướng dẫn:

I là giao điểm của (P) và Δ

I thuộc Δ nên I (1+7t; 3t; 1 – 2t)

Lại có I thuộc (P) nên:

5(1+7t) -4.3t+1 -2t-6=0 ⇔ t=0

⇒ I(1;0;1)

Khoảng cách từ I đến mặt phẳng (Q) là:

d(I;(Q))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= (5√6)/3

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:

πr2 =20π ⇒ r=2√5

Gọi R là bán kính mặt cầu, ta có:

⇒ R=√(r2 +d2 )Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= √(330)/3

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+y2+(z-1)2=110/3

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác