Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng
Bài viết Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng.
Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng
Bài giảng: Cách làm bài tập viết phương trình mặt phẳng cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Phương pháp giải
1. Tìm vecto chỉ phương của Δ, Δ' là u1→; u2→
2. Vecto pháp tuyến của mặt phẳng (α) là nα →=[u1→ , u2→ ]
3. Lấy 1 điểm M trên đường thẳng Δ
4. Áp dụng cách viết phương trình mặt phẳng đi qua một điểm và có 1 vecto pháp tuyến.
Ví dụ minh họa
Bài 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng và song song với đường thẳng
Lời giải:
Đường thẳng d1 đi qua điểm M (1; 1; 1) và có vecto chỉ phương u1→(0; -2;1)
Đường thẳng d2 đi qua điểm N (1; 0;1) có vecto chỉ phương u2→(1;2;2)
Ta có: [u1→ , u2→ ]=(-6;1;2)
Gọi n→ là một vecto pháp tuyến của mặt phẳng (P) ta có:
nên n→ cùng phương với [u1→ , u2→]
Chọn n→=(-6;1;2)
Mặt phẳng (P) đi qua điểm M (1; 1; 1) và nhận vecto pháp tuyến n→=(-6;1;2) có phương trình là:
-6(x -1) +1(y -1) +2(z -1) =0
⇔ -6x +y +2z +3=0
Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.
Vậy phương trình mặt phẳng (P) là -6x +y +2z +3 =0.
Bài 2: Trong không gian hệ tọa độ Oxyz, cho đường thẳng và . Viết phương trình mặt phẳng (P) chứa d và song song với d’
Lời giải:
Đường thẳng d đi qua điểm M (1; 5; 4) và có vecto chỉ phương u1→ (2; 0;-1)
Đường thẳng d’ đi qua điểm N (3; 6;0) có vecto chỉ phương u2→ (1;1;-1)
Ta có: [u1→ , u2→ ]=(1;3;2)
Gọi n→ là một vecto pháp tuyến của mặt phẳng (P) ta có:
nên n→ cùng phương với [u1→ , u2→ ]
Chọn n→ =(1;3;2)
Mặt phẳng (P) đi qua điểm M (1; 5; 4) và nhận vecto pháp tuyến n→ =(1;3;2) có phương trình là:
(x -1) +3(y -5) +2(z- 4) =0
⇔ x +3y +2z -20 =0
Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.
Vậy phương trình mặt phẳng (P) là x +3y +2z -20 =0.
Bài 3: Trong không gian với hệ toạ độ Oxyz, Viết phương trình mặt phẳng chứa:và song song với
Lời giải:
Đường thẳng d1 đi qua điểm M (1; -2; 4) và có vecto chỉ phương u1→(-2; 1;3)
Đường thẳng d2đi qua điểm N (-1; 0;-2) có vecto chỉ phương u2→(1;-1;3)
Ta có: [u1→ , u2→ ]=(6;9;1)
Gọi n→ là một vecto pháp tuyến của mặt phẳng (P) ta có:
nên n ⃗ cùng phương với [u1→ , u2→ ]
Chọn n→=(6;9;1)
Mặt phẳng (P) đi qua điểm M (1; -2; 4) và nhận vecto pháp tuyến n→=(6;9;1) có phương trình là:
6(x -1) +9(y +2) +(z -4) =0
⇔ 6x +9y +z +8 =0
Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy thỏa mãn.
Vậy không tồn tại mặt phẳng (P) thỏa mãn yêu cầu đề bài.
Bài 4: Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:
Lời giải:
AB→=(-4;5;-1); CD→=(-1;0;2)
⇒ [AB→ , CD→]=(10;9;5)
Gọi n→ là một vecto pháp tuyến của mặt phẳng (P)
Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có: ⇒ n→ cùng phương với [AB→ , CD→ ]
Chọn n→=(10;9;5)
Vậy phương trình mặt phẳng (P) có vecto pháp tuyến n→=(10;9;5) và đi qua điểm A(5; 1; 3) là:
10(x -5) +9(y -1) +5(z -3) =0
⇔ 10x +9y +5z -74 =0
Thay tọa độ C, D vào phương trình thấy không thỏa mãn.
Vậy phương trình mặt phẳng cần tìm là
⇔ 10x +9y +5z -74 =0
Bài giảng: Cách viết phương trình mặt phẳng nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều