Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia chỉ 399k, tại khoahoc.vietjack.com. Xem ngay Xem ngay!

Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng - Toán lớp 12



Toán lớp 12: Phương pháp tọa độ trong không gian

Viết phương trình mặt phẳng chứa đường thẳng và song song với đường thẳng

Phương pháp giải

1. Tìm vecto chỉ phương của Δ, Δ' là u1; u2

2. Vecto pháp tuyến của mặt phẳng (α) là nα =[u1 , u2 ]

3. Lấy 1 điểm M trên đường thẳng Δ

4. Áp dụng cách viết phương trình mặt phẳng đi qua một điểm và có 1 vecto pháp tuyến.

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án và song song với đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hướng dẫn:

Đường thẳng d1 đi qua điểm M (1; 1; 1) và có vecto chỉ phương u1(0; -2;1)

Đường thẳng d2 đi qua điểm N (1; 0;1) có vecto chỉ phương u2(1;2;2)

Ta có: [u1 , u2 ]=(-6;1;2)

Gọi n là một vecto pháp tuyến của mặt phẳng (P) ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án nên n cùng phương với [u1 , u2]

Chọn n=(-6;1;2)

Mặt phẳng (P) đi qua điểm M (1; 1; 1) và nhận vecto pháp tuyến n=(-6;1;2) có phương trình là:

-6(x -1) +1(y -1) +2(z -1) =0

⇔ -6x +y +2z +3=0

Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.

Vậy phương trình mặt phẳng (P) là -6x +y +2z +3 =0.

Bài 2: Trong không gian hệ tọa độ Oxyz, cho đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Viết phương trình mặt phẳng (P) chứa d và song song với d’

Hướng dẫn:

Đường thẳng d đi qua điểm M (1; 5; 4) và có vecto chỉ phương u1 (2; 0;-1)

Đường thẳng d’ đi qua điểm N (3; 6;0) có vecto chỉ phương u2 (1;1;-1)

Ta có: [u1 , u2 ]=(1;3;2)

Gọi n là một vecto pháp tuyến của mặt phẳng (P) ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án nên n cùng phương với [u1 , u2 ]

Chọn n =(1;3;2)

Mặt phẳng (P) đi qua điểm M (1; 5; 4) và nhận vecto pháp tuyến n =(1;3;2) có phương trình là:

(x -1) +3(y -5) +2(z- 4) =0

⇔ x +3y +2z -20 =0

Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.

Vậy phương trình mặt phẳng (P) là x +3y +2z -20 =0.

Bài 3: Trong không gian với hệ toạ độ Oxyz, Viết phương trình mặt phẳng chứa:Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánvà song song vớiToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hướng dẫn:

Đường thẳng d1 đi qua điểm M (1; -2; 4) và có vecto chỉ phương u1(-2; 1;3)

Đường thẳng d2đi qua điểm N (-1; 0;-2) có vecto chỉ phương u2(1;-1;3)

Ta có: [u1 , u2 ]=(6;9;1)

Gọi n là một vecto pháp tuyến của mặt phẳng (P) ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án nên n ⃗ cùng phương với [u1 , u2 ]

Chọn n=(6;9;1)

Mặt phẳng (P) đi qua điểm M (1; -2; 4) và nhận vecto pháp tuyến n=(6;9;1) có phương trình là:

6(x -1) +9(y +2) +(z -4) =0

⇔ 6x +9y +z +8 =0

Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy thỏa mãn.

Vậy không tồn tại mặt phẳng (P) thỏa mãn yêu cầu đề bài.

Bài 4: Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:

Hướng dẫn:

AB=(-4;5;-1); CD=(-1;0;2)

⇒ [AB , CD]=(10;9;5)

Gọi n là một vecto pháp tuyến của mặt phẳng (P)

Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánn cùng phương với [AB , CD ]

Chọn n=(10;9;5)

Vậy phương trình mặt phẳng (P) có vecto pháp tuyến n=(10;9;5) và đi qua điểm A(5; 1; 3) là:

10(x -5) +9(y -1) +5(z -3) =0

⇔ 10x +9y +5z -74 =0

Thay tọa độ C, D vào phương trình thấy không thỏa mãn.

Vậy phương trình mặt phẳng cần tìm là

⇔ 10x +9y +5z -74 =0

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác