Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến
Bài viết Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến.
Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến
Bài giảng: Cách làm bài tập viết phương trình mặt phẳng cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Phương pháp giải
Phương trình mặt phẳng đi qua điểm M (xo ;yo ;zo ) và có Vecto pháp tuyến n→(A;B;C) là:
A(x -xo ) +B(y -yo ) +C(z -zo )=0
Ví dụ minh họa
Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A (1; 0; -2) và có vecto pháp tuyến n→ (2; -1;1)
Lời giải:
Mặt phẳng (P) đi qua điểm A (1; 0; -2) và có vecto pháp tuyến n→ (2; -1;1) có phương trình là:
1(x -1) -1(y -0) +1(z +2) =0
⇔ x -y +z +1 =0
Bài 2: Viết phương trình mặt phẳng đi qua điểm A (1; -2; 1) và có vecto pháp tuyến n→ (0; 2;-1)
Lời giải:
Mặt phẳng (P) đi qua điểm A (1; -2; 1) và có vecto pháp tuyến n→ (0; 2;-1) có phương trình là:
0 . (x -1) +2(y +2) -1(z -1) =0
⇔ 2y -z +5 =0
Bài 3: Viết phương trình mặt phẳng đi qua điểm O (0; 0; 0) và có vecto pháp tuyến n→ (-1;2;-1)
Lời giải:
Mặt phẳng đi qua điểm O (0; 0; 0) và có vecto pháp tuyến n→ (-1;2;-1) có phương trình là:
-1(x -0) +2(y -0) -1(z -0) =0
⇔ -x +2y -z =0
Bài 4: Viết phương trình mặt phẳng đi qua điểm A (-2; 5; -4) và có vecto pháp tuyến n→ (0;2;-1)
Lời giải:
Mặt phẳng đi qua điểm A (-2; 5; -4) và có vecto pháp tuyến n→ (0;2;-1) có phương trình là:
0 . (x +2) +2(y -5) -1 . (z +4) =0
⇔ 2y -z -14 =0
Bài giảng: Cách viết phương trình mặt phẳng nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều