Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Phương pháp tọa độ trong không gian

Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng

Phương pháp giải

Cách 1:

1. Vecto pháp tuyến của mặt phẳng (P) là: n (A;B;C)

2. Do mặt phẳng (α) // (P) nên vecto pháp tuyến của mặt phẳng (α) là n (A;B;C).

3. Phương trình mặt phẳng (α):

A(x -xo ) +B(y -yo ) +C(z -zo) =0

Cách 2:

1. Mặt phẳng (α) // (P) nên phương trình mặt phẳng (α) có dạng:

Ax +By +Cz +D'=0 (*) với D'≠D

2. Vì mặt phẳng (α) đi qua điểm M (xo ;yo ;zo ) nên thay tọa độ điểm

M (xo ;yo ;zo ) vào (*) tìm đươc D’

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M (0; 1; 2) và song song với mặt phẳng (Q): 2x – 4y + 2 = 0.

Hướng dẫn:

Mặt phẳng (P) song song với mặt phẳng (Q) nên vecto pháp tuyến của mặt phẳng (Q) là n (2; -4;0)

Mặt phẳng (P) đi qua điểm M(0; 1; 2) và có vecto pháp tuyến n (2; -4;0) nên có phương trình là:

2(x -0) -4(y -1) +0 . (z -2) =0

⇔2x -4y +4 =0

⇔x -2y +2 =0

Bài 2: Viết phương trình mặt phẳng (P) đi qua điểm M (-1; 2; -3) và song song với mặt phẳng (Oxy)

Hướng dẫn:

Phương trình mặt phẳng (Oxy) là: z=0

Do mặt phẳng (P) song song song với mặt phẳng (Oxy) nên mặt phẳng (P) có dạng: z +c =0 (z≠0)

Do mặt phẳng (P) đi qua điểm M (-1; 2; -3) nên ta có: -3 +c = 0 ⇔ c =3

Vậy phương trình mặt phẳng (P) là: z +3 =0

Bài 3: Viết phương trình mặt phẳng (P) đi qua điểm M (0; -1; 3) và song song với mặt phẳng (Q): 2x+3y-z+5=0

Hướng dẫn:

Do mặt phẳng (P) song song với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến n (2; 3;-1)

Phương trình mặt phẳng (P) có vecto pháp tuyến n (2; 3;-1) và đi qua điểm M (0; -1; 3) là:

2(x -0) +3(y +1) -1(z -3)=0

⇔ 2x +3y -z =0

Bài 4: Trong không gian Oxyz, cho các điểm A (5; 1; 3), B(1; 2; 6), C(5; 0; 4), D(4; 0; 6). Viết phương trình mặt phẳng đi qua D và song song với mặt phẳng (ABC)

Hướng dẫn:

AB=(-4;1;3); AC=(0; -1;1)

⇒ [AB , AC ]=(4;4;4)

Gọi n là một vecto pháp tuyến của mặt phẳng (ABC) ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án nên n ⃗ cùng phương với [AB , AC ]

Chọn n=(1;1;1) là vecto pháp tuyến của mặt phẳng (ABC)

Do mặt phẳng (P) song song với mặt phẳng (ABC) nên mặt phẳng (P) có vecto pháp tuyến n=(1;1;1).

Phương trình mặt phẳng (P) đi qua A (5; 1; 3) và có vecto pháp tuyến

n=(1;1;1) là:

x -5 +y -1 +z -3 =0

⇔ x +y +z -9 =0

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác