Viết phương trình mặt phẳng đi qua 1 điểm và vuông góc với 2 mặt phẳng



Bài viết Viết phương trình mặt phẳng đi qua 1 điểm và vuông góc với 2 mặt phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt phẳng đi qua 1 điểm và vuông góc với 2 mặt phẳng.

Viết phương trình mặt phẳng đi qua 1 điểm và vuông góc với 2 mặt phẳng

Bài giảng: Cách làm bài tập viết phương trình mặt phẳng cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Phương pháp giải

Quảng cáo

1. Tìm vecto pháp tuyến của (P) và (Q) là n1n2

2. Vecto pháp tuyến của mặt phẳng (α) là n=[n1 ; n2 ]

3. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 vecto pháp tuyến.

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(-1; -2; 5) và vuông góc với hai mặt phẳng (Q): x + 2y – 3z +1=0 và (R):2x-3y+z+1=0

Lời giải:

Vecto pháp tuyến của mặt phẳng (Q) là n1=(1;2; -3)

Vecto pháp tuyến của mặt phẳng (R) là n2=(2; -3;1)

Ta có: [n1 ; n2 ]=(-7; -7; -7) nên mặt phẳng (P) nhận n=(1;1;1) là một vecto pháp tuyến và (P) đi qua điểm M(-1; -2; 5) nên mặt phẳng (P) có phương trình: x+1+y+2+z-5=0

⇔ x +y +z -2 =0

Bài 2: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(3; -1; -5), đồng thời vuông góc với cả hai mặt phẳng (Q):3x-2y+2z=0 và (R):5x-4y+3z=0

Lời giải:

Quảng cáo

Vecto pháp tuyến của mặt phẳng (Q) là n1=(3;-2; 2)

Vecto pháp tuyến của mặt phẳng (R) là n2=(5; -4;3)

Ta có: [n1 ; n2 ]=(2;1;-2) nên mặt phẳng (P) nhận n=(2;1;-2) là một vecto pháp tuyến và (P) đi qua điểm M (3; -1; -5) nên mặt phẳng (P) có phương trình:

2(x -3) +y +1 -2(z +5) =0

⇔ 2x +y -2z -15 =0

Bài 3: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A (-1; 2; -3), đồng thời vuông góc với mặt phẳng Oxy và mặt phẳng (Q): x + 2y – z + 4 = 0.

Lời giải:

Mặt phẳng Oxy có vecto pháp tuyến n1=(0;0;1)

Vecto pháp tuyến của mặt phẳng (Q) là n2=(1; 2;-1)

Ta có: [n1 ; n2 ]=(-2;1;0) nên mặt phẳng (P) nhận n=(2;-1;0) là một vecto pháp tuyến và (P) đi qua điểm A (-1; 2; -3) nên mặt phẳng (P) có phương trình:

2(x +1) -(y -2) =0

⇔ 2x -y +4 =0

Quảng cáo

Bài 4: Trong không gian hệ tọa độ Oxyz, mặt phẳng (P) đi qua điểm A (1; -3; 2) và vuông góc với hai mặt phẳng (α): x+3=0 và (β): z-2=0 có phương trình là:

Lời giải:

Mặt phẳng (α) có vecto pháp tuyến là n1=(1;0;0)

Mặt phẳng (β) có vecto pháp tuyến là n2=(0;0;1)

Ta có: [n1 ; n2 ]=(0;-1;0) nên mặt phẳng (P) nhận n=(0;1;0) là một vecto pháp tuyến và (P) đi qua điểm A (1; -3; 2) nên mặt phẳng (P) có phương trình:

y+3=0

Bài giảng: Cách viết phương trình mặt phẳng nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


phuong-phap-toa-do-trong-khong-gian.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên