15 Bài tập Tính chất của hai tiếp tuyến cắt nhau lớp 9 (có đáp án)

Với 15 Bài tập Tính chất của hai tiếp tuyến cắt nhau lớp 9 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Bài tập Tính chất của hai tiếp tuyến cắt nhau.

15 Bài tập Tính chất của hai tiếp tuyến cắt nhau lớp 9 (có đáp án)

Câu 1: Tâm đường tròn nội tiếp của tam giác là

Quảng cáo

A. giao của ba đường phân giác góc trong tam giác

B. giao ba đường trung trực của tam giác

C. trọng tâm tam giác

D. trực tâm của tam giác

Lời giải:

Tâm đường tròn nội tiếp của tam giác là giao của ba đường phân giác góc trong tam giác

Chọn đáp án A

Câu 2: Mỗi một tam giác có bao nhiêu đường tròn bàng tiếp

A. 1

B. 2

C. 3

D. 4

Lời giải:

Đường tròn tiếp xúc với một cạnh của tam giác và tiếp xúc với phần kéo dài của hai cạnh còn lại gọi là đường tròn bàng tiếp của tam giác

Với một tam giác có ba đường tròn bàng tiếp

Chọn đáp án C

Câu 3: Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Chọn khẳng định sai?

Quảng cáo

A. Khoảng cách từ điểm đó đến hai tiếp điểm là bằng nhau

B. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi hai bán kính

C. Tia nối từ tâm tới điểm đó là tia phân giác của góc tạo bởi hai bán kính

D. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi hai tiếp tuyến

Lời giải:

Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì:

+ Điểm đó cách đều hai tiếp điểm

+ Tia kẻ từ điểm đó đi qua tâm là tia phân giác của các góc tạo bởi hai tiếp tuyến

+ Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm

Chọn đáp án B

Câu 4: Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Vẽ đường kính CD của (O). Khi đó:

A. BD // OA

B. BD // AC

C. BD ⊥ OA

D. BD cắt OA

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

*Xét tam giác BOC có OB = OC = R nên tam giác OBC cân tại O có OH là đường phân giác của góc Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án ( tính chất hai tiếp tuyến cắt nhau).

Do đó, OH đồng thời là đường cao: (1)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A

Câu 5: Cho nửa đường tròn tâm O, đường kính AB. Dựng các tiếp tuyến Ax và By với đường tròn. Lấy điểm I bất kì trên nửa đường tròn, tiếp tuyến tại I cắt Ax, By lần lượt tại C và D.

Quảng cáo

Khẳng định nào sau đây là sai?

A. AC + BD = CD

B. AC . BD = R2

C. OD2 = DB. (AC + DB)

D. Có 2 khẳng định sai

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Do AC và CI là 2 tiếp tuyến cắt nhau tại C nên: CA = CI ( tính chất 2 tiếp tuyến cắt nhau)

* Do BD và DI là 2 tiếp tuyến cắt nhau tại D nên: DB = DI ( tính chất 2 tiếp tuyến cắt nhau).

Suy ra: AC + BD = CI + DI = CD.

+) AC.BD = CI.DI (1)

Xét tam giác COD vuông tại O có đường cao OI nên:

CI.ID = IO2 = R2 (2)

Từ (1) và (2) suy ra: AC.BD = R2

Và OD2 = DI.DC = DB . (AC + BD)

Chọn đáp án D.

Câu 6: Cho đường tròn (O; 6cm) . Gọi A là điểm nằm ngoài đường tròn sao cho OA = 10cm.

Qua A dựng hai tiếp tuyến AM và AN đến (O), với M và N là tiếp điểm. Gọi giao điểm của AO và MN là H. Tìm khẳng định đúng?

A. OH = 3,6cm

B. AH = 4,8cm

C. MH = 6,4 cm

D.Tất cả sai

Lời giải:

Theo tính chất hai tiếp tuyến cắt nhau ta có: OH là đường phân giác của góc MON

Tam giác MON có OM = ON (= R) nên đây là tam giác cân tại O có OH là đường phân giác nên đồng thời là đường cao.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

AH = AO – OH = 10 – 3,6 = 6,4 cm

Xét tam giác AMO vuông tại M có MH là đường cao.Áp dụng hệ thức cạnh và góc trong tam giác vuông ta có:

MH2 = OH.AH = 3,6.6,4 = 23,04 ⇒ MH = 4,8cm

Chọn đáp án A.

Câu 7: Cho đường tròn (O), điểm nằm ngoài đường tròn,kẻ các tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm ). Lấy điểm M trên cung nhỏ BC, qua M dựng tiếp tuyến với đường tròn cắt các tiếp tuyến AB và AC theo thứ tự D và E. Khi đó, chu vi tam giác ADE bằng?

A. AB

B. 2AB

C. AC

D. 3AC

Lời giải:

* Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB = AC; DB = DM; EM = EC

suy ra: DE = DM + ME = DB + EC.

* Chu vi tam giác ADE là:

AD + AE + DE = AD + AE + DB + EC

= (AD + DB ) + ( AE + EC ) = AB + AC = 2AB ( vì AB = AC )

Chọn đáp án B.

Câu 8: Cho đường tròn (O); điểm M nằm ngoài đường tròn (O). Từ M dựng hai tiếp tuyến MA và MB. Tia MO cắt đường tròn tại N ( N nằm trên cung lớn AB). Khi đó, tam giác NAB là:

Quảng cáo

A. Tam giác vuông

B. Tam giác đều

C. Tam giác cân

D. Tam giác tù

Lời giải:

Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)

Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)

Từ (1) và (2) suy ra: OM là đường trung trực của AB.

Ta có điểm N thuộc đường trung trực của AB nên NA = NB

Suy ra, tam giác NAB là tam giác cân tại N

Chọn đáp án C.

Câu 9: Cho đường tròn tâm O, điểm M nằm ngoài đường tròn. Qua M kẻ 2 tiếp tuyến MA và MB đến đường tròn (A; B là 2 tiếp điểm. Đường thẳng OM cắt AB tại H. Biết rằng OA = 10 cm; R = 5 cm . Tìm khẳng định đúng?

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Ta có: OA = OB = R nên tam giác ABO là cân tại O (1)

Theo tính chất hai tiếp tuyến cắt nhau ta có: OH là tia phân giác của góc AOB (2)

Từ (1) và (2) suy ra: OH là đường cao trong tam giác AOB hay OH ⊥ Ab.

* Xét tam giác vuông AOM có :

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A.

Câu 10: Cho đường tròn (O; 6cm) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến MA và MB đến đường tròn (A và B là tiếp điểm), biết MO = 12cm . Tính Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

A. 30°

B. 90°

C. 60°

D. 120°

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C

Câu 11: Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại I. Đường thẳng qua I và vuông góc với IA cắt OB tại K. Chọn khẳng định đúng.

A. OI = OK = KI  

B. KI = KO

C. OI = OK

D. IO = IK

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Xét (O) có IA, IB là hai tiếp tuyến cắt nhau tại I nên Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Mà OA // KI (Vì cùng vuông góc với AI) nên Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án (hai góc ở vị trí so le trong)

Từ đó Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án suy ra ΔKOI cân tại K ⇒ KI = KO

Đáp án cần chọn là: B

Câu 12: Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB sao cho góc AMB bằng 120o. Biết chu vi tam giác MAB là 6 (3 + 2√3)cm, tính độ dài dây AB.

A. 18cm     

B. 6√3 cm 

C. 12√3 cm

D. 15cm

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Xét (O) có Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án (tính chất hai tiếp tuyến cắt nhau)

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Đáp án cần chọn là: A

Câu 13: Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB sao cho góc AMB bằng 60o. Biết chu vi tam giác MAB là 24cm, tính độ dài bán kính đường tròn.

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Xét (O) có MA = MB (tính chất hai tiếp tuyến cắt nhau)

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Lại có Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án (tính chất hai tiếp tuyến cắt nhau).

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Đáp án cần chọn là: C

Câu 14: Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp trong góc A. Gọi O là trung điểm của IK. Tâm của đường tròn đi qua bốn điểm B, I, C, K là:

A. Điểm O  

B. Điểm H  

C. Trung điểm AK

D. Trung điểm BK

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Vì tam giác ABC cân tại A nên I; K ∈ đường thẳng AH với {H} = BC ∩ AI

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Nên bốn điểm B; I; C; K nằm trên đường tròn Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Đáp án cần chọn là: A

Vận dụng

Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp trong góc A. Gọi O là trung điểm của IK. Tính bán kính đường tròn (O)  biết AB = AC = 20cm, BC = 24cm

A. 18cm     

B. 15cm     

C. 12cm     

D. 9cm

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Vì tam giác ABC cân tại A nên I; K ∈ đường thẳng AH với {H} = BC ∩ AI

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Ta có HB = HC (AK là trung trực của BC) Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Theo Pytago ta có Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Lại có ΔACH ∽ ΔCOH (hai tam giác vuông có Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án)    

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Đáp án cần chọn là: B

Câu 15: Cho đường tròn (O), bán kính OA. Dây CD là đường trung trực của OA. Tứ giác OCAD là hình gì?

A. Hình bình hành                            

B. Hình thoi         

C. Hình chữ nhật                              

D. Hình thang cân

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Gọi H là giao của OA và CD

Xét (O) có OA ⊥ CD tại H nên H là trung điểm của CD

Xét tam giác OCAD có hai đường chéo OA và CD vuông góc với nhau và giao nhau tại trung điểm H mỗi đường nên OCAD là hình thoi

Đáp án cần chọn là: B

Vận dụng

Cho đường tròn (O), bán kính OA. Dây CD là đường trung trực của OA. Kẻ tiếp tuyến với đường tròn tại C, tiếp tuyến này cắt đường thẳng OA tại I. Biết OA = R. Tính CI theo R

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Lời giải:

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Gọi H là giao của OA và CD

Xét (O) có OA ⊥ CD tại H nên H là trung điểm của CD

Xét tam giác OCAD có hai đường chéo OA và CD vuông góc với nhau và giao nhau tại trung điểm H mỗi đường nên OCAD là hình thoi

Xét tam giác COA có OC = OA = R và OC = AC (do OCAD là hình thoi theo chứng minh trên) nên ΔCOA là tam giác đều.

Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án

Đáp án cần chọn là: D

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên