Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)



Bài viết Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0) lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0).

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

A. Phương pháp giải

+) B1: Đặt t = (x + a)(x + b) ⇒ t = x2 + (a + b)x + ab

⇒ t - ab = x2 + (a + b)x

+) B2: Biến đổi biểu thức (x + c)(x + d) theo biến t

Ta có: (x + c)(x + d) = x2 + (c + d)x + cd = x2 + (a + b)x + cd = t – ab + cd

+) B3: Biến đổi phương trình (x + a)(x + b)(x + c)(x + d) = m theo biến t

t(t – ab + cd) = m ⇔ t2 + (– ab + cd)t – m = 0(*)

Giải phương trình (*) tìm t sau đó tìm x

B. Bài tập

Câu 1: Giải phương trình  x(x + 1)(x + 2)(x + 3) = 24 (1)

Giải

Phương trình (1) ⇔ x(x + 3)(x + 1)(x + 2) = 24

Đặt t = x(x + 3) = x2 + 3x

(x + 1)(x + 2) = x2 + 3x + 2 = t + 2

Khi đó phương trình trở thành:

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = -6 ⇒ x2 + 3x = -6 ⇔x2 + 3x + 6 = 0 (phương trình vô nghiệm vì ∆ < 0)

Với t = 4 ⇒ x2 + 3x = 4 ⇔x2 + 3x - 4 = 0. Phương trình có a + b + c = 0 nên có 2 nghiệm x = 1, x = -4

Vậy phương trình có 2 nghiệm: x = 1, x = -4

Câu 2: Giải phương trình  (x + 4)(x + 5)(x + 7)(x + 8) = 4 (1)

Giải

Phương trình (1) ⇔ (x + 4)(x + 8)(x + 5)(x + 7) = 4

Đặt t = (x + 4)(x + 8) = x2 + 12x + 32

⇒ (x + 5)(x + 7) = x2 + 12x + 35 = t + 3

Khi đó phương trình trở thành:

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = 1 ⇒ x2 + 12x + 32 = 1 ⇔ x2 + 12x + 31 = 0. Phương trình có ∆ꞌ = 36 – 31 = 5 > 0 nên có 2 nghiệm phân biệt: x = -6 ± √5

Với t = -4 ⇒ x2 + 12x + 32 = -4 ⇔ x2 + 12x + 36 = 0 ⇔(x + 6)2 = 0 ⇔ x = -6

Vậy phương trình có 3 nghiệm: x = -6, x = -6 ± √5

Câu 3: Giải phương trình  (x + 5)(x + 6)(x - 4)(x - 5) = -21 (1)

Giải

Phương trình (1) ⇔ (x + 5)(x - 4)(x + 6)(x - 5) = -21

Đặt t = (x -4)(x + 5) = x2 + x - 20

⇒ (x + 6)(x - 5) = x2 + x - 30 = t - 10

Khi đó phương trình trở thành:

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = 3 ⇒ x2 + x-20 = 3 ⇔ x2 + x - 23 = 0. Phương trình có ∆ = 12 + 4.1.23 = 93 > 0 nên phương trình có 2 nghiệm phân biệt Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = 7 ⇒ x2 + x-20 = 7 ⇔ x2 + x - 27 = 0. Phương trình có ∆ = 12 + 4.1.27 = 109 > 0 nên phương trình có 2 nghiệm phân biệt Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Vậy phương trình có 4 nghiệm: Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Câu 4: Giải phương trình  (x +5)(x + 4)(x - 1)(x - 2) = 112 (1)

Giải

Phương trình (1) ⇔ (x + 5)(x - 2)(x + 4)(x - 1) = 112

Đặt t = (x - 2)(x + 5) = x2 + 3x - 10

⇒ (x + 4)(x - 1) = x2 + 3x - 4 = t + 6

Khi đó phương trình trở thành:

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = 8 ⇒ x2 + 3x - 10 = 8 ⇔ x2 + 3x - 18 = 0. Phương trình có ∆ = 32 + 4.1.18 = 81 > 0 nên phương trình có 2 nghiệm phân biệt:  x = -6, x = 3

Với t = -14 ⇒ x2 + 3x - 10 = -14 ⇔ x2 + 3x + 4 = 0. Phương trình có ∆ = 32 - 4.1.4 = -7 < 0 nên phương trình vô nghiệm

Vậy phương trình có 2 nghiệm: x = -6, x = 3

Câu 5: Giải phương trình  (x +1)(x + 3)(x + 6)(x + 4) = -8 (1)

Giải

Phương trình (1) ⇔ (x +1)(x + 6)(x + 4)(x + 3) = -8

Đặt t = (x + 1)(x + 6) = x2 + 7x + 6

⇒ (x + 4)(x + 3) = x2 + 7x + 12 = t + 6

Khi đó phương trình trở thành:

Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = -2 ⇒ x2 + 7x + 6 = -2 ⇔ x2 + 7x + 8 = 0. Phương trình có ∆ = 72 - 4.1.8 = 17 > 0 nên phương trình có 2 nghiệm phân biệt Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Với t = -4 ⇒ x2 + 7x + 6 = -4 ⇔ x2 + 7x + 10 = 0. Phương trình có ∆ = 72 - 4.1.10 = 9 > 0 nên phương trình có 2 nghiệm phân biệt x = -2, x = -5

Vậy phương trình có 4 nghiệm: Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên