Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 (cực hay, có đáp án)
Bài viết Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng cực.
- Cách giải bài tập xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng
- Ví dụ minh họa xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng
- Bài tập vận dụng xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng
- Bài tập tự luyện xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng
Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 (cực hay, có đáp án)
Phương pháp giải
Cho điểm M(x0; y0 ) và đường thẳng (d) có phương trình:
y = ax + b. Khi đó:
M ∈ (d) ⇔ y0 = ax0 + b;
M ∉ (d) ⇔ y0 ≠ ax0 + b.
Ví dụ minh họa
Ví dụ 1: Cho hàm số y = (2m - 1)x + m + 1 với m ≠ 1/2. Hãy xác định m trong mỗi trường hợp sau:
a) Đồ thị hàm số đi qua M(-1; 1)
b) Đồ thị hàm số không đi qua điểm N (1; 3)
Lời giải:
a) Đồ thị đi qua điểm M (-1; 1) nên
1 = (2m - 1)(-1) + m + 1 ⇔ m = 1
Vậy với m = 1 thì đồ thị hàm số đi qua điểm M (-1; 1).
b) Đồ thị hàm số không đi qua điểm N (1; 3) nên:
3 ≠ (2m - 1).1 + m + 1 ⇔ 3m ≠ 3 ⇔ m ≠ 1.
Ví dụ 2: Cho đường thẳng (d): y = -2x + 3. Tìm m để đường thẳng (d) đi qua điểm A (-m; -3).
Lời giải:
Đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi:
-3 = -2.(-m) + 3 ⇔ 2m = -6 ⇔ m = -3.
Vậy đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi m = -3.
Ví dụ 3: Chứng minh rằng đường thẳng (d): (m + 2)x + y + 4m - 3 = 0 luôn đi qua một điểm cố định với mọi giá trị của m.
Lời giải:
Gọi điểm M(x0; y0 ) là điểm cố định mà (d) luôn đi qua, ta có:
(m + 2) x0 + y0 + 4m - 3 = 0
⇔ m(x0 + 4) + (2x0 + y0 - 3) = 0
Đường thẳng (d) luôn đi qua M(x0; y0 ) với mọi m khi và chỉ khi:
Vậy điểm cố định mà (d) luôn qua với mọi giá trị của m là M (-4; 11).
Bài tập vận dụng
Bài 1: Cho đường thẳng (d): y = -3x + 1. Trong các điểm M(-1; 2), N(0; -1), P(1/3; 0), hãy xác định các điểm thuộc và không thuộc đường thẳng (d).
Bài 2: Cho đường thẳng (d): y = (m + 2)x + 3m - 1. Tìm m để đường thẳng (d) đi qua điểm M (-2; 3).
Hướng dẫn giải và đáp án
Lời giải:
Bài 1:
M(-1; 2) ∉ (d) vì khi x = -1 thì -3.(-1) + 1 = 4 ≠ 2
N(0;1) ∈ (d) vì khi x = 0 thì -3.0 + 1 = 1
P(1/3;0) ∈ (d) vì khi x = 1/3 thì (-3).1/3 + 1 = 0.
Bài 2:
M(-2; 3) ∈ (d): y = (m + 2)x + 3m - 1 khi:
3 = (m + 2).(-2) + 3m - 1 ⇔ 3 = -2m - 4 + 3m - 1
⇔ m = 8.
Vậy đường thẳng (d): y = (m + 2)x + 3m - 1 đi qua điểm M khi m = 8.
Bài tập tự luyện
Bài 1. Cho đường thẳng d: y = (2m – 3)x.
a) Với giá trị nào của m thì điểm A(– 1; 5) thuộc đường thẳng d;
b) Tìm m để đường thẳng nhận giá trị bằng – 3 tại x = 2.
Bài 2. Cho đường thẳng d1: và d2: . Trong các điểm thì điểm nào thuộc hai đường thẳng?
Bài 3. Cho hàm số y = (m2 – 3)x + 2 có đồ thị là đường thẳng d.
a) Vẽ d khi m = 2;
b) Tìm m để hàm số đồng biến, nghịch biến;
c) Tìm m để d đi qua A(1; 2);
d) Với m = 2 thì điểm B(– 5; 3) có thuộc đường thẳng d.
Bài 4. Hãy xác định hệ số a và b của đường thẳng d: y = ax + b biết rằng hai điểm A(– 1; 2), B(2; – 3) thuộc đường thẳng.
Bài 5. Cho đường thẳng d: y = mx + 3 biết d đi qua điểm M(;0).
a) Hệ số góc bằng bao nhiêu;
b) Tính góc tạo bởi tia Ox và d.
Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:
- Lý thuyết Hàm số bậc nhất
- Dạng 1: Tìm tập xác định của hàm số
- Dạng 2: Cách xác định hàm số bậc nhất
- Dạng 3: Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng cực hay, có đáp án
- Dạng 4: Cách xác định đường thẳng
- Bài tập tổng hợp Hàm số bậc nhất (có đáp án)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều