Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 (cực hay, có đáp án)



Bài viết Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng cực.

Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 (cực hay, có đáp án)

Phương pháp giải

    Cho điểm M(x0; y0 ) và đường thẳng (d) có phương trình:

    y = ax + b. Khi đó:

    M ∈ (d) ⇔ y0 = ax0 + b;

    M ∉ (d) ⇔ y0 ≠ ax0 + b.

Quảng cáo

Ví dụ minh họa

Ví dụ 1: Cho hàm số y = (2m - 1)x + m + 1 với m ≠ 1/2. Hãy xác định m trong mỗi trường hợp sau:

    a) Đồ thị hàm số đi qua M(-1; 1)

    b) Đồ thị hàm số không đi qua điểm N (1; 3)

Lời giải:

    a) Đồ thị đi qua điểm M (-1; 1) nên

    1 = (2m - 1)(-1) + m + 1 ⇔ m = 1

    Vậy với m = 1 thì đồ thị hàm số đi qua điểm M (-1; 1).

    b) Đồ thị hàm số không đi qua điểm N (1; 3) nên:

    3 ≠ (2m - 1).1 + m + 1 ⇔ 3m ≠ 3 ⇔ m ≠ 1.

Ví dụ 2: Cho đường thẳng (d): y = -2x + 3. Tìm m để đường thẳng (d) đi qua điểm A (-m; -3).

Lời giải:

    Đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi:

    -3 = -2.(-m) + 3 ⇔ 2m = -6 ⇔ m = -3.

    Vậy đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi m = -3.

Quảng cáo

Ví dụ 3: Chứng minh rằng đường thẳng (d): (m + 2)x + y + 4m - 3 = 0 luôn đi qua một điểm cố định với mọi giá trị của m.

Lời giải:

    Gọi điểm M(x0; y0 ) là điểm cố định mà (d) luôn đi qua, ta có:

    (m + 2) x0 + y0 + 4m - 3 = 0

    ⇔ m(x0 + 4) + (2x0 + y0 - 3) = 0

    Đường thẳng (d) luôn đi qua M(x0; y0 ) với mọi m khi và chỉ khi:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy điểm cố định mà (d) luôn qua với mọi giá trị của m là M (-4; 11).

Bài tập vận dụng

Bài 1: Cho đường thẳng (d): y = -3x + 1. Trong các điểm M(-1; 2), N(0; -1), P(1/3; 0), hãy xác định các điểm thuộc và không thuộc đường thẳng (d).

Bài 2: Cho đường thẳng (d): y = (m + 2)x + 3m - 1. Tìm m để đường thẳng (d) đi qua điểm M (-2; 3).

Quảng cáo

Hướng dẫn giải và đáp án

Lời giải:

Bài 1:

    M(-1; 2) ∉ (d) vì khi x = -1 thì -3.(-1) + 1 = 4 ≠ 2

    N(0;1) ∈ (d) vì khi x = 0 thì -3.0 + 1 = 1

    P(1/3;0) ∈ (d) vì khi x = 1/3 thì (-3).1/3 + 1 = 0.

Bài 2:

    M(-2; 3) ∈ (d): y = (m + 2)x + 3m - 1 khi:

    3 = (m + 2).(-2) + 3m - 1 ⇔ 3 = -2m - 4 + 3m - 1

    ⇔ m = 8.

    Vậy đường thẳng (d): y = (m + 2)x + 3m - 1 đi qua điểm M khi m = 8.

Quảng cáo

Bài tập tự luyện

Bài 1. Cho đường thẳng d: y = (2m – 3)x.

a) Với giá trị nào của m thì điểm A(– 1; 5) thuộc đường thẳng d;

b) Tìm m để đường thẳng nhận giá trị bằng – 3 tại x = 2.

Bài 2. Cho đường thẳng d1: -2x-12y=54+2 và d2: -2x-y=(1+3)2. Trong các điểm M(-58;-4),N(0;-4-23),K(3-1;2) thì điểm nào thuộc hai đường thẳng?

Bài 3. Cho hàm số y = (m2 – 3)x + 2 có đồ thị là đường thẳng d.

a) Vẽ d khi m = 2;

b) Tìm m để hàm số đồng biến, nghịch biến;

c) Tìm m để d đi qua A(1; 2);

d) Với m = 2 thì điểm B(– 5; 3) có thuộc đường thẳng d.

Bài 4. Hãy xác định hệ số a và b của đường thẳng d: y = ax + b biết rằng hai điểm A(– 1; 2), B(2; – 3) thuộc đường thẳng.

Bài 5. Cho đường thẳng d: y = mx + 3 biết d đi qua điểm M(-3;0).

a) Hệ số góc bằng bao nhiêu;

b) Tính góc tạo bởi tia Ox và d.

Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-2-ham-so-bac-nhat.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên