Cách xác định đường thẳng lớp 9 (cực hay, có đáp án)



Bài viết Cách xác định đường thẳng lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định đường thẳng cực.

Cách xác định đường thẳng lớp 9 (cực hay, có đáp án)

Phương pháp giải

Quảng cáo

    Gọi hàm số cần tìm là: y = ax + b (a ≠ 0), ta phải tìm a và b

    + Với điều kiện của bài toán, ta xác định được các hệ thức liên hệ giữa a và b.

    + Giải phương trình để tìm a, b.

Ví dụ minh họa

Ví dụ 1:: Cho hàm số bậc nhất: y = -2x + b. Xác định b nếu:

    a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2.

    b) Đồ thị hàm số đi qua điểm A (-1; 2).

Lời giải:

    a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 nên b = -2.

    Vậy hàm số cần tìm là y = -2x – 2.

    b) Đồ thị hàm số y = -2x + b đi qua điểm A(-1; 2) nên:

    2 = -2.(-1) + b ⇔ 2 = 2 + b ⇔ b = 0.

    Vậy hàm số cần tìm là y = -2x.

Quảng cáo

Ví dụ 2: Cho hàm số y = (m - 2)x + m + 2. Xác định m, biết:

    a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2.

    b) Đồ thị hàm số đi qua gốc tọa độ.

Lời giải:

    a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 2 nên điểm A (-2; 0) thuộc đồ thị hàm số.

    Do đó: 0 = -2(m - 2) + m + 2 ⇔ -2m + 4 + m + 2 = 0 ⇔ m = 6.

    b) Đồ thị hàm số đi qua gốc tọa độ nên O (0; 0) thuộc đồ thị hàm số

    Do đó: 0 = (m - 2).0 + m + 2 ⇔ m + 2 = 0 ⇔ m = -2.

Ví dụ 3: Xác định đường thẳng đi qua hai điểm A (-3; 0) và B (0; 2).

Lời giải:

    Gọi phương trình đường thẳng AB là y = ax + b

    Ta có:

    A(-3;0) ∈ AB ⇒ 0 = a.(-3) + b ⇒ b = 3a

    B(0;2) ∈ AB ⇒ 2 = a.0 + b ⇒ b = 2

    ⇒ a = 2/3

    Vậy phương trình đường thẳng AB là y = (2/3)x + 2.

Quảng cáo

Ví dụ 4: Cho ba đường thẳng (d1 ): y = (m2 - 1)x + m2 - 5 (với m ≠ ±1)

    (d2 ): y = x + 1; (d3 ): y = -x + 3

    Xác định m để ba đường thẳng (d1 ),(d2 ),(d3 ) đồng quy

Lời giải:

    Hoành độ giao điểm của hai đường thẳng (d2) và (d3) là nghiệm của phương trình:

    x + 1 = -x + 3 ⇔ x = 1 ⇒ y = -1 + 3 = 2

    ⇒ Giao điểm của (d2) và (d3) là A (1; 2)

    Để ba đường thẳng (d1),(d2),(d3) đồng quy thì A thuộc (d1)

    ⇔ 2 = (m2 - 1).1 + m2 - 5 ⇔ m2 = 4 ⇔ m = ±2

    Vậy với m = ±2 thì ba đường thẳng trên đồng quy.

Ví dụ 5 (VD nâng cao): Cho hai đường thẳng

    (d1 ): y = (2m2 + 1)x + 2m - 1

    (d2 ): y = m2x + m - 2

    với m là tham số

    a) Tìm tọa độ giao điểm I của (d1 ) và (d2 ) theo m

    b) Khi m thay đổi, hãy chứng minh điểm I luôn thuộc một đường thẳng cố định.

Lời giải:

    a) Hoành độ giao điểm của (d1 ) và (d2 ) là nghiệm của phương trình

    (2m2 + 1)x + 2m - 1 = m2x + m - 2

    ⇔(m2 + 1)x = -m - 1

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Tung độ giao điểm của (d1 ) và (d2 ) là

    y = m2x + m - 2

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    b) Ta có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án
Quảng cáo

Bài tập vận dụng

Bài 1: Cho hàm số y = (2m + 1)x - m - 3

    a) Tìm m biết đồ thị hàm số đi qua điểm M (-2; 5)

    b) Tìm m biết đồ thị hàm số cắt trục tung tại điểm có tung độ -3.

Bài 2: Xác định đường thẳng đi qua hai điểm M (-2; 3) và N (1; -3)

Hướng dẫn giải và đáp án

Lời giải:

Bài 1:

    a) Đồ thị hàm số y = (2m + 1)x - m + 3 đi qua điểm M (-2; 5) nên:

    5 = (2m + 1).(-2) - m - 3 ⇔ -4m - 2 - m - 3 = 5 ⇔ m = -2

    Vậy với m = -2 thì đồ thị hàm số đi qua điểm M (-2; 5)

    b) Đồ thị hàm số cắt trục tung tại điểm có tung độ -3 nên điểm A (0; -3) thuộc đồ thị hàm số

    ⇒ -3 = (2m + 1).0 - m + 3 ⇔ -m + 3 = -3 ⇔ m = 6.

    Vậy với m = 6 thì đồ thị hàm số cắt trục tung tại điểm có tung độ -3.

Bài 2:

    Gọi phương trình đường thẳng MN là y = ax + b

    M(-2; 3) ∈ MN ⇒ 3 = -2a + b ⇒ b = 2a + 3 (1)

    N(1; -3) ∈ MN ⇒ -3 = a + b (2)

    Thế (1) vào (2) ta được: -3 = a + 2a + 3 ⇔ 3a = -6 ⇔ a = -2.

    ⇒ b = 2a + 3 = 2.(-2) + 3 = -1.

    Vậy phương trình đường thẳng cần tìm là y = -2x – 1.

Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-2-ham-so-bac-nhat.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên