Cách xác định đường thẳng cực hay, có đáp án



Cách xác định đường thẳng cực hay, có đáp án

Phương pháp giải

Quảng cáo

    Gọi hàm số cần tìm là: y = ax + b (a ≠ 0), ta phải tìm a và b

    + Với điều kiện của bài toán, ta xác định được các hệ thức liên hệ giữa a và b.

    + Giải phương trình để tìm a, b.

Ví dụ minh họa

Ví dụ 1:: Cho hàm số bậc nhất: y = -2x + b. Xác định b nếu:

    a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2.

    b) Đồ thị hàm số đi qua điểm A (-1; 2).

Hướng dẫn:

    a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 nên b = -2.

    Vậy hàm số cần tìm là y = -2x – 2.

    b) Đồ thị hàm số y = -2x + b đi qua điểm A(-1; 2) nên:

    2 = -2.(-1) + b ⇔ 2 = 2 + b ⇔ b = 0.

    Vậy hàm số cần tìm là y = -2x.

Quảng cáo

Ví dụ 2: Cho hàm số y = (m - 2)x + m + 2. Xác định m, biết:

    a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2.

    b) Đồ thị hàm số đi qua gốc tọa độ.

Hướng dẫn:

    a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 2 nên điểm A (-2; 0) thuộc đồ thị hàm số.

    Do đó: 0 = -2(m - 2) + m + 2 ⇔ -2m + 4 + m + 2 = 0 ⇔ m = 6.

    b) Đồ thị hàm số đi qua gốc tọa độ nên O (0; 0) thuộc đồ thị hàm số

    Do đó: 0 = (m - 2).0 + m + 2 ⇔ m + 2 = 0 ⇔ m = -2.

Ví dụ 3: Xác định đường thẳng đi qua hai điểm A (-3; 0) và B (0; 2).

Hướng dẫn:

    Gọi phương trình đường thẳng AB là y = ax + b

    Ta có:

    A(-3;0) ∈ AB ⇒ 0 = a.(-3) + b ⇒ b = 3a

    B(0;2) ∈ AB ⇒ 2 = a.0 + b ⇒ b = 2

    ⇒ a = 2/3

    Vậy phương trình đường thẳng AB là y = (2/3)x + 2.

Quảng cáo

Ví dụ 4: Cho ba đường thẳng (d1 ): y = (m2 - 1)x + m2 - 5 (với m ≠ ±1)

    (d2 ): y = x + 1; (d3 ): y = -x + 3

    Xác định m để ba đường thẳng (d1 ),(d2 ),(d3 ) đồng quy

Hướng dẫn:

    Hoành độ giao điểm của hai đường thẳng (d2) và (d3) là nghiệm của phương trình:

    x + 1 = -x + 3 ⇔ x = 1 ⇒ y = -1 + 3 = 2

    ⇒ Giao điểm của (d2) và (d3) là A (1; 2)

    Để ba đường thẳng (d1),(d2),(d3) đồng quy thì A thuộc (d1)

    ⇔ 2 = (m2 - 1).1 + m2 - 5 ⇔ m2 = 4 ⇔ m = ±2

    Vậy với m = ±2 thì ba đường thẳng trên đồng quy.

Ví dụ 5 (VD nâng cao): Cho hai đường thẳng

    (d1 ): y = (2m2 + 1)x + 2m - 1

    (d2 ): y = m2x + m - 2

    với m là tham số

    a) Tìm tọa độ giao điểm I của (d1 ) và (d2 ) theo m

    b) Khi m thay đổi, hãy chứng minh điểm I luôn thuộc một đường thẳng cố định.

Hướng dẫn:

    a) Hoành độ giao điểm của (d1 ) và (d2 ) là nghiệm của phương trình

    (2m2 + 1)x + 2m - 1 = m2x + m - 2

    ⇔(m2 + 1)x = -m - 1

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Tung độ giao điểm của (d1 ) và (d2 ) là

    y = m2x + m - 2

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    b) Ta có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài tập vận dụng

Bài 1: Cho hàm số y = (2m + 1)x - m - 3

    a) Tìm m biết đồ thị hàm số đi qua điểm M (-2; 5)

    b) Tìm m biết đồ thị hàm số cắt trục tung tại điểm có tung độ -3.

Bài 2: Xác định đường thẳng đi qua hai điểm M (-2; 3) và N (1; -3)

Hướng dẫn giải và đáp án

Hướng dẫn:

Bài 1:

    a) Đồ thị hàm số y = (2m + 1)x - m + 3 đi qua điểm M (-2; 5) nên:

    5 = (2m + 1).(-2) - m - 3 ⇔ -4m - 2 - m - 3 = 5 ⇔ m = -2

    Vậy với m = -2 thì đồ thị hàm số đi qua điểm M (-2; 5)

    b) Đồ thị hàm số cắt trục tung tại điểm có tung độ -3 nên điểm A (0; -3) thuộc đồ thị hàm số

    ⇒ -3 = (2m + 1).0 - m + 3 ⇔ -m + 3 = -3 ⇔ m = 6.

    Vậy với m = 6 thì đồ thị hàm số cắt trục tung tại điểm có tung độ -3.

Bài 2:

    Gọi phương trình đường thẳng MN là y = ax + b

    M(-2; 3) ∈ MN ⇒ 3 = -2a + b ⇒ b = 2a + 3 (1)

    N(1; -3) ∈ MN ⇒ -3 = a + b (2)

    Thế (1) vào (2) ta được: -3 = a + 2a + 3 ⇔ 3a = -6 ⇔ a = -2.

    ⇒ b = 2a + 3 = 2.(-2) + 3 = -1.

    Vậy phương trình đường thẳng cần tìm là y = -2x – 1.

Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-2-ham-so-bac-nhat.jsp


Nhóm học tập 2k7