Đường thẳng song song và đường thẳng cắt nhau và cách giải bài tập lớp 9 (hay, chi tiết)



Bài viết Đường thẳng song song và đường thẳng cắt nhau và cách giải bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán lớp 9.

Đường thẳng song song và đường thẳng cắt nhau và cách giải bài tập

I. Lý thuyết

Cho đường thẳng d: y = ax + b a0 và đường thẳng d’: y = a’x + b’ a'0

1. Điều kiện để hai đường thẳng song song

 d và d’ song song với nhau khi và chỉ khi

a=a'bb'

Ví dụ: y = 3x + 1 và y = 3x – 2 là hai đường thẳng song song vì

a=a'=3bb'12

2. Hai đường thẳng trùng nhau

d và d’ trùng nhau khi và chỉ khi

a=a'b=b'

3. Hai đường thẳng cắt nhau

d và d’ cắt nhau khi và chỉ khi aa'

Trường hợp đặc biệt a.a'=1 thì d và d’ là hai đường thẳng vuông góc.

II. Các dạng bài tập

Dạng 1: Xét vị trí tương đối của hai đường thẳng.

Phương pháp giải: Sử dụng đến các điều kiện của vị trí tương đối hai đường thẳng

+ Hai đường thẳng song song

+ Hai đường thẳng cắt nhau

+ Hai đường thẳng vuông góc

+ Hai đường thẳng trùng nhau.

Ví dụ 1: Cho các đường thẳng d1: y = 3x – 1; d2: y = 5x + 6; d3: y = 3x + 2; d4: y = 13x  + 1.

Xét vị trí tương đối của với các đường thẳng d2; d3; d4.

Lời giải:

 + Xét vị trí tương đối của d1: y = 3x – 1 và d2: y = 5x + 6

Ta có: a=3a'=5aa'35

d1;d2 là hai đường thẳng cắt nhau

+ Xét vị trí tương đối của d1: y = 3x – 1 và d3: y = 3x +2

Ta có: a=3a'=3a=a'=3

Lại có b=1b'=2bb'12

d1;d3 là hai đường thẳng song song

+ Xét vị trí tương đối của d1: y = 3x – 1 và d4: y = 13x  + 1.

Ta có: a=3a'=13aa'313

Lại có a.a'=3.13=1

d1;d4 là hai đường thẳng vuông góc.

Ví dụ 2: Cho đường thẳng Δ: y = (2m – 2)x + 3

Tìm m để:

a) Δ song song với d1: y = 2x – 1

b) Δ vuông góc với d2: y = x – 1.

Lời giải:

a) Δ//d12m2=231

31 luôn đúng nên để Δ//d1 thì 2m – 2 =2

2m = 4

 m = 4:2

m = 2

Vậy m = 2 thì Δ//d1

b) Δd22m2.1=1

2m – 2 = -1

2m = -1 + 2

2m = 1

m = 12

Vậy m = 12 thì Δ vuông góc với d2

Dạng 2: Viết phương trình đường thẳng song song hoặc vuông góc với đường thẳng cho trước

Phương pháp giải: Vận dụng công thức về hai đường thẳng song song, hai đường thẳng vuông góc.

Cho đường thẳng d: y = ax + b a0 và đường thẳng d’: y = a’x + b’ a'0

+ Hai đường thẳng song song

d và d’ song song với nhau khi và chỉ khi

a=a'bb'

+ Hai đường thẳng vuông góc

a.a'=1 thì d và d’ là hai đường thẳng vuông góc.

Ví dụ 1: Viết phương trình đường thẳng d song song với đường thẳng d’: y = 3x +2 và đi qua A(1; 2).

Lời giải:

Gọi phương trình đường thẳng d cần tìm là y = ax + b (*) (a0)

Vì d // d’ nên

a = a’ = 3; b2

Vì d đi qua A(1; 2) nên ta thay x = 1; y = 2; a = 3 vào  (*)  ta được

2 = 3.1 + b

2 = 3 + b

b = 2 – 3

b = -1

y = 3x – 1

Vậy đường thẳng d cần tìm là y = 3x – 1

Ví dụ 2: Viết phương trình đường thẳng Δ đi qua M(2; -3) và vuông góc với đường thẳng d: y = 2x - 5

Lời giải:

 Gọi đường thẳng Δ cần tìm là y  = ax + b (**) (a0)

Δd nên ta có a.a’ = -1

a.2 = -1

a = 12

Δ đi qua M(2; -3) nên ta thay x = 2; y = -3; a = 12 vào (**) ta được

-3 = 12.2 + b

 -1 + b = -3

b = -2

Vậy đường thẳng Δ cần tìm là y = 12x – 2.

Ví dụ 3: Cho ba đường thẳng d1: y = 2x + 3; d2: y = x + 3; d3: y = 3x – 1.

a) Viết phương trình đường thẳng song song với d1 và đi qua giao điểm của d2d3.

b) Viết phương trình đường thẳng vuông góc với d2 và đi qua giao điểm của d1d3.

Lời giải:

a) Tìm giao điểm của d2 và d3

Phương trình hoành độ giao điểm của và là

x + 3 = 3x – 1

2x = 4

x = 2y = 5

Vậy tọa độ giao điểm của d2 và d3 là A(2; 5)

Gọi đường thẳng cần tìm là Δ1: y = ax + b (a0)

Δ1//d1 nên a = a’ = 2; b3

Vì đi qua A(2; 5) thay x = 2; y = 5; a = 2 vào  ta được:

5 = 2.2 + b

b = 5 – 4

b = 1

Vậy đường thẳng Δ1: y = 2x + 1.

b) Tìm tọa độ giao điểm d1 và d3

Phương trình hoành độ giao điểm của d1 và d3

2x + 3 = 3x – 1

3x – 2x = 3 + 1

x = 4y = 11

Vậy giao điểm của d1 và d3 là B(4; 11)

Gọi Δ2: y = ax + b (a0) là đường thẳng cần tìm

Δ2d2a.a’ = -1

1.a = -1

a = -1

Δ2 đi qua B(4; 11) thay x = 4; y = 11 và a = -1 vào Δ2 ta được:

11 = -1.4 + b

b = 11 + 4

b = 15

Vậy đường thẳng Δ2 cần tìm là y = -x + 15.

Dạng 3: Tìm m để đường thẳng thỏa mãn điều kiện cho trước

Phương pháp giải: Sử dụng công thức liên quan đến hai đường thẳng song song, hai đường thẳng vuông góc, hai đường thẳng cắt nhau.

Bước 1: Gọi đường thẳng cần tìm là y = ax + b (a0)

Bước 2: Cho a, b thỏa mãn điều kiện đề bài

Bước 3: Giải a, b để tìm m.

Ví dụ 1: Cho đường thẳng d: y = (2m + 1) x + 3. Tìm m để d song song song với đường thẳng d’ : y = 3x – 5

Lời giải:

Vì d // d’a = a’

2m + 1 = 3

2m = 3 – 1

2m = 2

m = 2:2

m = 1

Lại có b = 3 và b’ = -5

bb’

Vậy m = 1 thì d và d’ song song.

Ví dụ 2: Tìm m để d: y = 3mx + m và d’: y = 5mx + 1 (m0) cắt nhau tại điểm có hoành độ bằng 1

Lời giải:

Xét phương trình hoành độ giao điểm của d và d’

3mx + m = 5mx + 1

Vì d và d’ cắt nhau tại điểm có hoành độ bằng 1 nên thay x = 1 vào phương trình ta có:

3m.1 + m = 5m. 1 + 1

4m = 5m + 1

m = -1

Vậy m = -1 thì d và d’ cắt nhau tại điểm có hoành độ bằng 1.

Ví dụ 3: Tìm m để đường thẳng d1y=m22mx+3 + m song với đường thẳng d2: y  = 3x + 1 và cắt trục hoành tại điểm có hoành độ bằng -2.

Lời giải:

Vì d // d’m22m=33+m1m22m0

m22m3=0m2mm20

m3m+1=0m2m0m2

m3=0m+1=0m2m0m2

m=3 (tm)m=1 (tm)m2m2m0m=3m=1   (1)

Vì d cắt trục hoành tại điểm có hoành độ bằng -2 nên ta có x = -2; y = 0 thay vào d

0 = (m22m).(-2) + 3 + m

2m2+4m+3+m=0

2m2+5m+3=0

2m2m+6m+3=0

m2m+1+32m+1=0

2m+13m=0

2m+1=03m=0

2m=1m=3

m=12m=3 (2)

Từ (1) và (2) m = 3 thỏa mãn yêu cầu đề bài.

III. Bài tập tự luyện

Bài 1:  Xét vị trí tương đối của các cặp đường thẳng sau

a) d: y = 3x + 5 và d’: y = 2x + 6

b) d: y = 2x + 1 và d’: y = 2x + 3

c) d: y = x + 5 và d’: y = -x - 3

d) d: y = 3x + 5 và y = 3x – 5.

Bài 2: Cho đường thẳng d: y = 3x +5 và d’: y = (m+2)x – 3 + m

a) Tìm m để d // d’

b) Tìm m để d cắt d’

c) Tìm m để dd’

d) Tìm m để dd’

Bài 3: Cho đường thẳng d: y = 2x + 3; d’: y = 4x – 5

a) Tìm tọa độ giao điểm của d và d’

b) Viết phương trình đường thẳng đi qua tọa độ giao điểm của d và d’ và song song với đường thẳng y = 3x + 1.

Bài 4: Cho ba đường thẳng d1: y = 5x – 3; d2: 12y = x + 6 và d3: y = (m - 3)x +5

a) Tìm m để d1; d2; d3 đồng quy

b) Tìm m để d1//d3

c) Tìm m để d3 và d2 cắt nhau tại điểm có hoành độ bằng 1.

Bài 5: Viết phương trình đường thẳng d trong các trường hợp sau

a) d đi qua A(1; -3) và vuông góc với đường thẳng y = 2x + 1

b) d đi qua điểm B(1; -2) và song song với đường thẳng y = 2x – 3.

Bài 6: Cho các đường thẳng

d1: y = (2m + 1) x – (2m + 3)

d2 : y = (m – 1) x + m

a) Tìm m để d1d2

b) Tìm m để d1d2

c) Tìm m để d1//d2.

Bài 7: Viết phương trình đường thẳng d đi qua hai điểm A(1; 3) và B(2; 4).

Bài 8: Viết phương trình đường thẳng d đi qua giao điểm của  hai đường thẳng y = 3x – 2 và y = 2x + 1. Biết d song song với đường thẳng y = 4x – 3.

Bài 9: Viết phương trình đường thẳng d biết d cắt trục Ox tại điểm có hoành độ bằng 3 và cắt trục Oy tại điểm có tung độ bằng 4.

Bài 10: Cho đường thẳng:

d1: y = 2mx – (m + 5)

d2: y = (1 – 3n)x + n

a) Tìm điểm cố định mà d1 luôn đi qua.

b) Gọi I là điểm cố định d1 luôn đi qua. Tìm m để d2 đi qua I

c) Tìm m,n để d1d2.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên