Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án



Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

A. Phương pháp giải

Định lý Vi-ét: Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 (phân biệt hoặc trùng nhau) thì tổng các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9 và tích các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Dạng 2.1: Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2.2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm x0 của phương trình.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 2.3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số.

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 2.4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

+) Nếu a + b + c = 0 thì phương trình có nghiệm x1 = 1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

+) Nếu a - b + c = 0 thì phương trình có nghiệm x1 = -1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

Dạng 2.5. Tìm hai số khi biết tổng và tích

Nếu hai số u và v có tổng u + v = S và tích u.v = P thì hai số đó là nghiệm của phương trình x2 - Sx + P = 0 .

Điều kiện để có u và v là S2 - 4P ≥ 0.

B. Các ví dụ điển hình

Ví dụ 1: Cho phương trình bậc hai (m - 1)x2 - 2mx + m + 1 = 0 (m là tham số). Các giá trị nguyên của m để phương trình có nghiệm nguyên là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 2: Phương trình x2 + (2m + 1)x + 3m = 0 (với m là tham số) có hai nghiệm phân biệt, trong đó có một nghiệm là x1 = 3, nghiệm còn lại là x2 bằng:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 3: Tìm hệ thức liên hệ giữa hai nghiệm của phương trình x2 - (m + 3)x + 2m - 5 = 0 không phụ thuộc vào m.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 4: Cho phương trình x2 - 2x - 8 = 0 có hai nghiệm x1 và x2. Phương trình bậc hai một ẩn có hai nghiệm là y1 = x1 - 3 và y2 = x2 - 3 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

C. Bài tập vận dụng

Bài 1: Tìm m để phương trình x2 - 3mx + 2m2 + 6 = 0 (m là tham số) có hai nghiệm là độ dài hai cạnh của hình chữ nhật có chu vi bằng 42 và diện tích bằng 104.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án B

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 2: Hệ thức liên hệ giữa hai nghiệm của phương trình x2 - 2(m - 1)x - 2m + 1 = 0 không phụ thuộc vào m là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 3: Phương trình có hai nghiệm phân biệt x1; x2. Giá trị của biểu thức x12x2 + x1x22 bằng:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 4: Gọi S và P lần lượt là tổng và tích hai nghiệm của phương trình x2 - 2x - 3 = 0. Giá trị của biểu thức S2 + 2P là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án B

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 5: Cho phương trình x2 - (m2 + 1)x + 3m2 - 8 = 0 (với m là tham số). Tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn x1 = 4x2 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án C

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 6: Phương trình nào sau đây có nghiệm bằng nghịch đảo các nghiệm của phương trình x2 + mx - 2 = 0?

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án B

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 7: Cho phương trình x2 - 2x - m2 = 0 có hai nghiệm x1 và x2. Phương trình bậc hai một ẩn có hai nghiệm là y1 = 2x1 - 1 và y2 = 2x2 - 1 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 8: Cho phương trình bậc hai ẩn x , tham số m: mx2 - (2m + 3)x + m - 4 = 0. Với các giá trị của m để phương trình có hai nghiệm x1, x2, biểu thức liên hệ giữa hai nghiệm không phụ thuộc vào m là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án C

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 9: Tìm m để phương trình x2 + 3x + m - 1 = 0 có hai nghiệm x1, x2 thỏa mãn x1(x14 - 1) + x2(32x24 - 1) = 3

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bài 10: Cho phương trình x2 - 2(m - 2)x - 2m = 0. Giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x2 - x1 = x12 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Đáp án A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Nhóm học tập 2k7