Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2) - Toán lớp 9

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Tài liệu bài tập trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2) Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.

Quảng cáo

Câu 1: Tìm các giá trị của m để phương trình x2 – 2(m – 1)x – m + 2 = 0 có hai nghiệm trái dấu.

A. m < 2     

B. m > 2     

C. m = 2     

D. m > 0

Lời giải:

Phương trình x2 – 2(m – 1)x – m + 2 = 0 (a = 1; b = −2(m – 1); c = −m + 2)

Nên phương trình có hai nghiệm trái dấu khi ac < 0 ⇔ 1.(−m + 2) < 0

⇔ m > 2

Vậy m > 2 là giá trị cần tìm

Đáp án cần chọn là: B

Câu 2: Tìm các giá trị của m để phương trình 3x2 + (2m + 7)x – 3m + 5 = 0 có hai nghiệm trái dấu.

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình 3x2 + (2m + 7)x – 3m + 5 = 0 (a = 3; b = 2m + 7; c = −3m + 5)

Nên phương trình có hai nghiệm trái dấu khi

ac < 0 ⇔ 3. (−3m + 5) < 0 ⇔ −3m + 5 < 0 ⇔ 3m > 5 ⇔ Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vậy Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2) là giá trị cần tìm

Đáp án cần chọn là: A

Câu 3: Tìm các giá trị của m để phương trình x2 – 2(m – 3) x + 8 – 4m = 0 có hai nghiệm âm phân biệt

A. m < 2 và m ≠ 1

B. m < 3     

C. m < 2     

D. m > 0

Lời giải:

Phương trình x2 – 2(m – 3) x + 8 – 4m = 0 (a ; 1; b’ = −(m – 3); c = 8 – 4m)

Ta có ∆' = (m – 3)2 – (8 – 4m) = m2 – 2m + 1 = (m – 1)2

S = x1 + x2 = 2 (m – 3); P = x1. x2 = 8 – 4m

Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt  

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vậy m < 2 và m ≠ 1 là giá trị cần tìm.

Đáp án cần chọn là: A

Quảng cáo

Câu 4: Cho phương trình 3x2 + 7x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt cùng âm.

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình 3x2 + 7x + m = 0 (a = 3; b = 7; c = m)

Ta có ∆ = 72 – 4.3.m = 49 – 12m

Gọi x1; x2 là hai nghiệm của phương trình

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt  

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: C

Câu 5: Tìm các giá trị nguyên của m để phương trình x2 − 6x + 2m + 1 = 0 có hai nghiệm dương phân biệt

A. m ∈ {−1; 1; 2; 3}                         

B. m ∈ {1; 2; 3}

C. m ∈ {0; 1; 2; 3; 4}                        

D. m ∈ {0; 1; 2; 3}

Lời giải:

Phương trình x2 − 6x + 2m + 1 = 0 (a = 1; b’ = −3; c = 2m + 1)

Ta có ∆ = 9 – 2m – 1= 8 – 2m; S = x1 + x2 = 6 ; P = x1.x2 = 2m + 1

Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt  

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: D

Câu 6: Cho phương trình x2 + (2m – 1)x + m2 – 2m + 2 = 0. Tìm m để phương trình có hai nghiệm phân biệt cùng dương

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình x2 + (2m – 1)x + m2 – 2m + 2 = 0

(a = 1; b = 2m – 1; c = m2 – 2m + 2)

Ta có ∆ = (2m – 1)2 – 4.( m2 – 2m + 2) = 4m – 7

Gọi x1; x2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có

Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt  

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vậy không có giá trị nào của m thỏa mãn đề bài

Đáp án cần chọn là: D

Quảng cáo

Câu 7: Tìm các giá trị của m để phương trình mx2 – 2(m – 2)x + 3(m – 2) = 0 có hai nghiệm phân biệt cùng dấu.

A. m < 0     

B. m > 1     

C. – 1 < m < 0      

D. m > 0

Lời giải:

Phương trình mx2 – 2(m – 2)x + 3(m – 2) = 0 (a = m; b = – 2(m – 2); c = 3(m – 2))

Ta có ∆ = (m – 2)2 = 3m (m – 2) = − 2m2 + 2m + 4 = (4 – 2m)(m + 1)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Phương trình có hai nghiệm phân biệt cùng dấu khi Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vậy −1 < m < 0 là giá trị cần tìm

Đáp án cần chọn là: C

Câu 8: Tìm các giá trị của m để phương trình (m – 1)x2 + 3mx + 2m + 1 = 0 có hai nghiệm cùng dấu.

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình (m – 1)x2 + 3mx + 2m + 1 = 0 (a = m – 1; b = 3m; c = 2m + 1)

Ta có ∆ = (3m)2 – 4.(2m + 1).(m – 1) = m2 – 4m + 4 = (m – 2)2

Gọi x1; x2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Phương trình có hai nghiệm cùng dấu khi Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: D

Câu 9: Tìm các giá trị của m để phương trình x2 − mx – m − 1 = 0 có hai nghiệm x1; x2 thỏa mãn x13 + x23 = −1

A. m = 1     

B. m = −1   

C. m = 0     

D. m > −1

Lời giải:

Phương trình x2 − mx – m − 1 = 0 có a = 1 ≠ 0 và ∆ = m2 – 4(m – 1) = (m – 2)2 ≠ 0; ∀m nên phương trình luôn có hai nghiệm x1; x2

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: B

Quảng cáo

Câu 10: Tìm các giá trị của m để phương trình x2 – 2(m + 1)x + 2m = 0 có hai nghiệm x1; x2 thỏa mãn x13 + x23 = 8

 A. m = 1    

B. m = −1   

C. m = 0     

D. m > −1

Lời giải:

Phương trình x2 – 2(m + 1)x + 2m = 0 có a = 1 ≠ 0 và

∆ = (m + 1)2 – 2m = m2 + 1 > 0;  m nên phương trình luôn có hai nghiệm x1; x2

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Phương trình 2m2 + 3m + 3 = 0 có ∆1 = 32 – 4.2.3 = −15 < 0 nên phương trình này vô nghiệm

Vậy m = 0 là giá trị cần tìm

Đáp án cần chọn là: C

Câu 11: Tìm các giá trị của m để phương trình x2 – 5x + m + 4 = 0 có hai nghiệm x1; x2 thỏa mãn x12 + x22 = 23

A. m = −2   

B. m = −1   

C. m = −3   

D. m = −4

Lời giải:

Phương trình x2 – 5x + m + 4 = 0 có a = 1 ≠ 0 và ∆ = 25 – 4(m + 4) = 9 – 4m

Phương trình có hai nghiệm x1; x2 khi ∆ ≥ 0 Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: C

Câu 12: Tìm các giá trị của m để phương trình x2 – 2mx + 2m − 1 = 0 có hai nghiệm x1; x2 thỏa mãn x12 + x22 = 10

A. m = −2   

B. m = 1     

C. m = −3   

D. Cả A và B

Lời giải:

Phương trình x2 – 2mx + 2m − 1 = 0 có a = 1 ≠ 0 và

∆ = 4m2 – 4 (2m – 1) = 4m2 – 8m + 4 = 4 (m – 1)2 ≥ 0;  ∀m

Phương trình có hai nghiệm x1; x2 với mọi m

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án cần chọn là: D

Câu 13: Giá trị nào dưới đây gần nhất với giá trị của m để x2 + 3x – m = 0 có hai nghiệm x1; x2 thỏa mãn 2x1 + 3x2 = 13

A. 416        

B. 415        

C. 414        

D. 418

Lời giải:

Phương trình x2 + 3x – m = 0 có a = 1 ≠ 0 và ∆ = 9 + 4m

Phương trình có hai nghiệm x1; x2 khi ∆ ≥ 0 Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Theo hệ thức Vi-ét ta có

Xét 2x1 + 3x2 = 13 Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2) thế vào phương trình (1) ta được:

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Từ đó phương trình (2) trở thành −19.22 = −m ⇔ m = 418 (nhận)

Vậy m = 418 là giá trị cần tìm

Đáp án cần chọn là: D

Câu 14: Cho phương trình x2 + 2x + m – 1 = 0. Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn 3x1 + 2x2 = 1

A. m = −34 

B. m = 34   

C. m = 35   

D. m = −35

Lời giải:

Phương trình x2 + 2x + m – 1 = 0 có a = 1 ≠ 0 và ∆' = 12 – (m – 1) = 2 – m

Phương trình có hai nghiệm x1; x2 ⇔  ∆ ≥ 0 ⇔ 2 – m ≥ 0 ⇔ m ≥ 2

Áp dụng định lý Vi – ét ta có x1 + x2 = − 2 (1);  x1.x2 = m – 1 (2)

Theo đề bài ta có: 3x1 + 2x2 = 1 (3)

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Thế vào (2) ta được: 5.(−7) = m – 1 ⇔  m = −34 (thỏa mãn)

Đáp án cần chọn là: A

Câu 15: Tìm giá trị của m để phương trình x2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x1; x2 và biểu thức A = (x1 − x2)2 đạt giá trị nhỏ nhất

A. m = 1     

B. m = 0     

C. m = 2     

D. m = 3

Lời giải:

Phương trình x2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và

∆ = (4m + 1)2 – 8 (m – 4) = 16m2 + 33 > 0; ∀m

Nên phương trình luôn có hai nghiệm x1; x2

Theo hệ thức Vi-ét ta có: Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2) 

Xét A = (x1 − x2)2 = (x1 + x2)2 – 4x1.x2 = 16m2 + 33  33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án cần chọn là: B

Câu 16: Cho phương trình x2 – 2(m + 4)x + m2 – 8 = 0. Xác định m để phương trình có hai nghiệm x1; x2 thỏa mãn A = x1 + x2 − 3x1x2 đạt giá trị lớn nhất

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình x2 – 2(m + 4)x + m2 – 8 = 0 có a = 1 ≠ 0 và

∆' = (m + 4)2 – (m2 – 8) = 8m + 24

Phương trình có hai x1; x2 ⇔ ∆' ≥ 0 ⇔ 8m + 24 ≥ 0 ⇔ m ≥ −3

Áp dụng định lý Vi – ét ta có x1 + x2 = 2 (m + 4);  x1.x2 = m2 – 8

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: A

Câu 17: Tìm giá trị của m để phương trình x2 – 2(m – 2)x + 2m – 5 = 0 hai nghiệm x1; x2 thỏa mãn x1(1 − x2) + x2(2 – x1) < 4

A. m > 1     

B. m < 0     

C. m > 2     

D. m < 3

Lời giải:

Phương trình x2 – 2(m – 2)x + 2m – 5 = 0 có a = 1 ≠ 0 và

∆' = (m − 2)2 – 2m + 5 = m2 – 6m + 9 = (m – 3)2 ≥ 0; ∀ m

Nên phương trình luôn có hai nghiệm x1; x2

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: A

Câu 18: Tìm giá trị của m để phương trình x2 + 2(m + 1)x + 4m = 0 có

x1(x2 – 2) + x2(x1 – 2) > 6

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Lời giải:

Phương trình x2 + 2(m + 1)x + 4m = 0 có a = 1 ≠ 0 và

∆' = (m + 1)2 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0; ∀ m

Nên phương trình luôn có hai nghiệm x1; x2

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Đáp án cần chọn là: A

Câu 19: Cho phương trình x2 + mx + n – 3 = 0. Tìm m và n để hai nghiệm x1; x2 của phương trình thỏa mãn hệ

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

A. m = 7; n = − 15                   

B. m = 7; n = 15

C. m = −7; n = 15                    

D. m = −7; n = −15

Lời giải:

∆ = m2 – 4 (n – 3) = m2 – 4n + 12

Phương trình đã cho có hai nghiệm x1; x2 ⇔ ∆ ≥ 0 ⇔ m2 – 4n + 12 ≥ 0

Áp dụng định lý Vi-ét ta có x1 + x2 = − m;  x1. x2 = n – 3

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

Thử lại ta có: ∆ = (−7)2 – 4.15 + 12 = 1 > 0 (tm)

Vậy m = −7; n = 15

Đáp án cần chọn là: C

Câu 20: Cho phương trình x2 – (2m – 3)x + m2 – 3m = 0. Xác định m để phương trình có hai nghiệm x1; x2 thỏa mãn 1 < x1 < x2 < 6

A. m < 6     

B. m > 4     

C. 4 ≤ m ≤ 6

D. 4 < m < 6

Lời giải:

Xét phương trình x2 – (2m – 3)x + m2 – 3m = 0 có a = 1 ≠ 0 và

∆ = (2m – 3)2 – 4(m2 – 3m) = 9 > 0  ∀m

Phương trình luôn có hai nghiệm phân biệt x1; x2

Áp dụng định lý Vi-ét ta có: x1 + x2 = 2m – 3; x1.x2 = m2 – 3m

Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án (phần 2)

⇔ 4 < m < 6

Đáp án cần chọn là: D

Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên