Trắc nghiệm Toán 12 Bài 4 (có đáp án): Hàm số mũ và hàm số lôgarit (phần 1)



Với bài tập & câu hỏi trắc nghiệm Toán 12 Giải tích Bài 4 : Hàm số mũ và hàm số lôgarit có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Trắc nghiệm Toán 12 Bài 4 (có đáp án): Hàm số mũ và hàm số lôgarit (phần 1)

Bài 1: Cho các phát biểu sau đây về đồ thị của hàm số y = logax (0 < a ≠ 1):

Quảng cáo

(I) Cắt trục hoành

(II) Cắt trục tung

(III) Nhận trục tung làm tiệm cận đứng

(IV) Nhận trục hoành làm tiệm cận ngang

Trong những phát biểu trên, phát biểu nào đúng ?

A. Chỉ có (I), (II) và (III)    C. Chỉ có (II) và (IV)

B. Chỉ có (II), (III) và (IV)    D. Chỉ có (I) và (III)

Đồ thị hàm số y = logax luôn cắt trục hoành tại điểm (1 ;0), luôn nằm bên phải trục tung (vậy không cắt trục tung), nhận trục tung làm tiệm cận đứng, không có tiệm cận ngang. Vậy chỉ có (I) và (III) đúng

Bài 2: Tìm miền xác định của hàm số y = log5(x - 2x2)

A. D = (0; 2)    C. D = (0; 1/2)

B. D = (-∞; 0) ∪ (2; +∞)    D. D = (-∞; 0) ∪ (1/2; +∞)

Điều kiện để hàm số xác định x - 2x2 > 0 <=> 2x2 - x < 0 <=> 0 < x < 1/2 .

Vậy miền xác định là D = (0; 1/2)

Bài 3: Tìm miền xác định của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Điều kiện

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Miền xác định là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Quảng cáo

Bài 4: Khẳng định nào sau đây là đúng ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lưu ý rằng 1 < √2 < e < π

+ π > 1 ⇒ y = πx là hàm đồng biến.

⇒ π > π

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Khẳng định nào sau đây là sai ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6: Viết các số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

theo thứ tự tăng dần

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có -1 < 0 < √2 < π và 0 < 1/3 < 1 nên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 7: Tìm đạo hàm của hàm số y = log5(xex)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để thuận tiện, ta viết lại

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D

Bài 8: Tìm các khoảng đồng biến của hàm số y = x2e-4x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Quảng cáo

Tập xác định R.

Ta có:

y' = 2xe-4x + x2e-4x(-4) = 2e-4xx(1 - 2x)

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khoảng đồng biến của hàm số là (0; 1/2) .

Chọn đáp án C

Bài 9: Tìm các khoảng nghịch biến của hàm số y = 3ln(x +1) + x - x2/2

A.(-1; 2)   C. (-2 ;-1) và (2; +∞)

B. (2; +∞)   D. (-∞; -2) và (-1 ;2)

Tập xác định : (-1; +∞)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Kết hợp điều kiện, x > -1.

Từ đó, khoảng nghịch biến của hàm số là(2; +∞) .

Chọn đáp án B

Bài 10: Cho hai số thực a và b , với 0 < a < b < 1. Khẳng định nào sau đây là đúng ?

A. logba < 1 < logab   C. logab < 1 < logba

B. logba < logab < 1    D. 1 < logab < logba

Đặt c = b - a ta có c > 0.

Vì 0 < a < b < 1 nên các hàm số y = logax và logbx nghịch biến trên (0; +∞) nên ta có logab = loga(a + c) < logaa = 1 và logba = logb(b - c) > logbb = 1.

Vậy logab < a < logba

Chọn đáp án C.

Bài 11: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3e-2x trên đoạn [-1; 4]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 3x2e-2x + x3e-2x(-2) = 3x2e-2x - 2x3e-2x = x2(3 - 2x)e-2x

y'= 0 <=> x = 0 (loại) hoặc x = 3/2

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A

Bài 12: Số lượng cá thể của một mẻ cấy vi khuẩn sau t ngày kể từ lúc ban đầu được ước lượng bởi công thức N(t) = 1200.(1,148)t. Hãy tính số lượng cá thể của mẻ vi khuẩn ở hai thời điểm: ban đầu và sau 10 ngày. Làm tròn kết quả đến hàng trăm có kết quả là:

Quảng cáo

A. 1200 và 4700 cá thể    C. 1200 và 1400 cá thể

B. 1400 và 4800 cá thể    D. 1200 và 4800 cá thể

Số lượng ban đầu: N(0) = 1200.(1,148)0 = 1200 cá thể

Số lượng sau 10 ngày: N(10) = 1200.(1,148)10 ≈ 4771 ≈4800 cá thể

Chọn đáp án D.

Bài 13: Dựa trên dữ liệu của WHO (Tổ chức Y tế thế giới), số người trên thế giới bị nhiễm HIV trong khoảng từ năm 1985 đến 2006 được ước lượng bằng công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trong đó N(t) tính bằng đơn vị triệu người, t tính bằng đơn vị năm và t = 0 ứng với đầu năm 1985. Theo công thức trên, có bao nhiêu số người trên thế giới bị nhiễm HIV ở thời điểm đầu năm 2005?

A. 37,94 triệu người   C. 38,42 triệu người

B. 37,31 triệu người   D. 39,88 triệu người

Ta có 2005 – 1985 = 20 (năm). Vậy đầu năm 2005 ứng với t = 20. Số cần tìm

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 14: Biết rằng năm 2003 dân số Việt Nam là 80 902 000 người và tỉ lệ tăng dân số là 1,47%. Hỏi nếu vẫn giữ nguyên tỉ lệ tăng dân số hàng năm đó thì năm 2020 dân số Việt Nam sẽ là bao nhiêu (làm tròn kết quả đến hàng nghìn)?

A. 101119000 người    C. 103870000 người

B. 103681000 người    D. 106969000 người

Công thức tính dân số theo dữ kiện đã cho là: N(t) = 80902000.e0,0147t ở đó thời gian t tính bằng năm và t = 0 ứng với đầu năm 2003.

Ta có 2020 – 2003 = 17.

Vậy năm 2020 ứng với t = 17

Dân số năm 2020 tính theo dữ kiện đã cho : N(17) = 80902000.e17.0,0147t ≈ 103870000 người.

Chọn đáp án C.

Bài 15: Nồng độ c của một chất hóa học sau thời gian t xảy ra phản ứng tự xúc tác được xác định bằng công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hãy chọn phát biểu đúng :

A. Nồng độ c ngày càng giảm

B. Nồng độ c ngày càng tăng

C. Trong khoảng thời gian đầu nồng độ c tăng, sau đó giảm dần

D. Trong khoảng thời gian đầu nồng độ c giảm, sau đó tăng dần

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với mọi t ≥ 0 nên c(t) tăng trên [0; +∞] , nghĩa là nồng độ c ngày càng tăng.

Chọn đáp án B.

Bài 16: Cho các hàm số:

(I) y = (0,3)-x   (II) y = (1,3)-2x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong các hàm số đã cho, hàm số nào đồng biến trên R ?

A. Chỉ có (I) và (II)    C. Chỉ có (IV)

B. Chỉ có (I) và (IV)   D. Chỉ có (II) và (III)

Hàm số đồng biến khi a > 1.

Viết lại các hàm số về dạng hàm số mũ y = ax :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong bốn cơ số ta thấy chỉ có hai cơ số lớn hơn 1 là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó chỉ có hai hàm số (I) và (IV) là đồng biến trên R

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên