Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 3)
Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 3)
Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng
Chỉ từ 150k mua trọn bộ Đề ôn thi vào 10 môn Toán năm 2024 bản word có lời giải chi tiết:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận đề thi
Sở Giáo dục và Đào tạo ....
Kì thi tuyển sinh vào lớp 10
Môn thi: Toán (hệ Công lập)
Thời gian làm bài: 120 phút
Phần I. Trắc nghiệm (2 điểm)
Câu 1: Trong các đường thẳng sau đây, đường thẳng nào đi qua điểm A (1; 3):
A. x – y = 3 B. 2x + y =5
C. 2x – y = 3 D. x + y = 5
Câu 2: Điều kiện xác định của biểu thức là:
A. x = -2018 B. x ≠ -2018
C. x ≥ -2018 D. x ≤ -2018
Câu 3: Tìm m để 2 đường thẳng sau cắt nhau tại 1 điểm y = (2m – 1)x + 7 và y = 3x – 5
A. m = 2 B. m ≠ 2 C. m ≥ 2 D. m ≤ 2
Câu 4: Tìm giá trị của a để đồ thị hàm số y = ax2 đi qua điểm (1; - 4)
A. a = - 2 B. a = 2 C. a = 4 D. a = - 4
Câu 5: Biết phương trình x2 + bx – 2b = 0 có một nghiệm x = -3. Tìm nghiệm còn lại của phương trình:
Câu 6: Trong các nhận xét sau, nhận xét đúng là:
A. Hai cung bằng nhau thì có số đo bằng nhau
B. Hai cung có số đo bằng nhau thì bằng nhau
C. Cả a, b đều đúng
D. Cả a và b đều sai
Câu 7: Tính diện tích hình quạt có bán kính 6cm, độ dài cung là 5π cm
A. 10π cm2 B. 20π cm2 C.30π cm2 D. 15Bπ cm2
Câu 8: Tính diện tích toàn phần của hình nón có bán kính đáy 5 cm và độ dài đường sinh là 7 cm:
A. 35π cm2 B. 45π cm2 C. 52π cm2 D. 60π cm2
Phần II. Tự luận
Bài 1: (1,5 điểm) Giải các phương trình và hệ phương trình:
a) √5x - 2√5 = 0
b)3x2 - 8x - 6 = 0
Bài 2: (2 điểm)
1) Cho 2 hàm số (P): y = 2x2 và (d): y = -3x + 4
a) Vẽ 2 đồ thị trên cùng một mặt phẳng tọa độ Oxy
b) Tìm tọa độ giao điểm của 2 đồ thị trên bằng phép tính.
2) Cho phương trình x2 – 2(m – 1)x – 2m = 0.
Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m. Gọi 2 nghiệm của phương trình là x1; x2, tìm tất cả giá trị của m sao cho x12 + x1 - x2 = 5 - 2m
Bài 3: (1 điểm) Hai xe máy cùng xuất phát một lúc từ địa điểm A đến địa điểm B cách nhau 30 km. Xe thứ nhất chạy nhanh hơn xe thứ hai 5km/h nên đến B sớm hơn 5 phút. Tính vận tốc mỗi xe
Bài 4: (3,5 điểm) Trên đường tròn (O; R) đường kính AB lấy 2 điểm M, N theo thứ tự A, M, N, B ( hai điểm M, N khác 2 điểm A và B). Các đường thẳng AM và BN cắt nhau tại C, AN và BM cắt nhau tại D
a) Chứng minh tứ giác MCND nội tiếp. Xác định tâm I đường tròn ngoại tiếp tứ giác
b) Gọi H là giao điểm của CD và AB. Chứng minh rằng:
BN.BC = BH.BAv
c) Tính ∠IMO
d) Cho biết ∠BAM = 45o; ∠BAN = 30o. Tính theo R diện tích của tam giác ABC
Phần I. Trắc nghiệm
1.B | 2.C | 3.B | 4.A |
5.D | 6.A | 7.C | 8.D |
Phần II. Tự luận
Bài 1:
a) √5x - 2√5 = 0
⇔ √5x = 2√5
⇔ x = 2
Vậy phương trình có nghiệm x = 2.
b)3x2 - 8x - 6 = 0
Δ' = (-4)2 - 3.(-6) = 34 > 0
Phương trình có 2 nghiệm phân biệt
Vậy phương trình có tập nghiệm là S =
Vậy hệ phương trình đã cho có nghiệm (x; y) = (1; 1)
Bài 2:
1) Cho 2 hàm số (P): y = x2 và (d): y = -3x + 4
Xét hàm số: y = 2x2
Bảng giá trị
x | -2 | -1 | 0 | 1 | 2 |
y = 2x2 | 4 | 1 | 0 | 1 | 4 |
Đồ thị hàm số (P): y = x2 là đường parabol nằm phía trên trục hoành, nhận trục Oy là trục đối xứng và nhận đỉnh O (0;0) làm điểm thấp nhất
Xét hàm số y = -3x + 4
Bảng giá trị
x | 0 | 1 |
y = -3x + 4 | 4 | 1 |
b) phương trình hoành độ giao điểm của (P) và (d) là
x2 = - 3x + 4 ⇔ x2 + 3x - 4 = 0
=> phương trình có nghiệm x = 1 và x = - 4 ( do phương trình có dạng a + b + c =0)
Với x = 1 thì y = 1
Với x = - 4 thì y = 16
Vậy tọa độ giao điểm của (P) và (d) là (1; 1 ) và (-4; 16)
2) x2 – 2(m – 1)x – 2m = 0.
Δ'= (m-1)2 - (-2m) = m2 + 1 > 0 ∀m
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo định lí Vi- ét ta có:
⇔ x12 + x1 - x2 = 3 - (2m - 2)
⇔ x12 + x1 - x2 = 3 - x1 - x2
⇔ x12 + 2x1 - 3 = 0
Với x1 = 1 thay vào phương trình ban đầu tìm được m =
Với x1 = -3 thay vào phương trình ban đầu, tìm đc m =
Vậy với m = thì phương trình có 2 nghiệm thỏa mãn yêu cầu đề bài.
Bài 3:
Gọi vận tốc xe thứ nhất là x ( km/h) (x > 5)
Vận tốc xe thứ hai là x – 5 (km/h)
Thời gian đi của xe thứ nhất là:
Thời gian đi của xe thứ hai là
Do xe thứ nhất đến B sớm hơn xe thứ hai 5' = nên ta có phương trình
Vậy vận tốc của xe thứ nhất là 45 km/h
Vận tốc xe thứ hai là 40 km/h
Bài 4:
a) Ta có:
∠AMB = 90o (góc nội tiếp chắn nửa đường tròn)
=> ∠DMC = 90o
∠ANB = 90o (góc nội tiếp chắn nửa đường tròn)
=> ∠DNC = 90o
Xét tứ giác MCND có:
∠DMC + ∠DNC = 90o + 90o = 180o
=> Tứ giác MCDN là tứ giác nội tiếp
Do ∠DMC = 90o nên DC là đường kính đường tròn ngoại tiếp tứ giác MCDN
Do đó tâm I của đường tròn ngoại tiếp tứ giác là trung điểm I của DC
b) Xét tam giác CAB có:
AN ⊥ BC
BM ⊥ AC
AN giao với BM tại H
=> H là trực tâm của tam giác CAB
=> CH ⊥ BA
Xét ΔCHB và ΔBNA có:
∠CBA là góc chung
∠CHB = ∠ANB = 90o
=>ΔCHB ∼ ΔANB
=> BN.BC = BA.BH
c) Xét tam giác HDB vuông tại H có:
∠BDH + ∠DBH = 90o (1)
Xét tam giác IDM cân tại I (ID = IM )
=> ∠IMD = ∠IDM
Mà ∠IDM = ∠BDH (đối đỉnh)
=> ∠IMD = ∠BDH (2)
Mặt khác tam giác OBM cân tại O ( OB = OM)
=> ∠OMB = ∠DBH (3)
Từ (1); (2) và (3)
=> ∠IMD + ∠OMB = ∠BDH + ∠DBH = 90o
=> ∠IMO = 90o
d) Xét tam giác BAN vuông tại N có:
∠NAB = 30o => ∠NBA = 60o
Xét tam giác CHB vuông tại H có ∠NBA = 60o
=> BH = CH.cot60o =
Lại có: Tam giác CHA vuông tại H có ∠CAH = 45o
=> Tam giác CHA vuông cân tại H => CH = HA
Ta có:
AB = HA + HB = CH +
= 2R => CH = R√3(√3-1)
Diện tích tam giác ABC là:
SABC = CH.AB = .R√3(√3-1).2R = R2.√3(√3-1) (dvdt)
Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng
Xem thêm các đề thi vào lớp 10 môn Toán có đáp án hay khác:
Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 1)
Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 2)
Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 4)
Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 5)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Đề thi vào lớp 10 môn Toán (có đáp án) được các Giáo viên hàng đầu biên soạn theo cấu trúc ra đề thi Trắc nghiệm, Tự luận mới giúp bạn ôn luyện và giành được điểm cao trong kì thi vào lớp 10 môn Toán.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giáo án lớp 9 (các môn học)
- Giáo án điện tử lớp 9 (các môn học)
- Giáo án Toán 9
- Giáo án Ngữ văn 9
- Giáo án Tiếng Anh 9
- Giáo án Khoa học tự nhiên 9
- Giáo án Vật Lí 9
- Giáo án Hóa học 9
- Giáo án Sinh học 9
- Giáo án Địa Lí 9
- Giáo án Lịch Sử 9
- Giáo án GDCD 9
- Giáo án Tin học 9
- Giáo án Công nghệ 9
- Đề thi lớp 9 (các môn học)
- Đề thi Ngữ Văn 9 (có đáp án)
- Đề thi Toán 9 (có đáp án)
- Đề thi Tiếng Anh 9 mới (có đáp án)
- Đề thi Tiếng Anh 9 (có đáp án)
- Đề thi Khoa học tự nhiên 9 (có đáp án)
- Đề thi Lịch Sử và Địa Lí 9 (có đáp án)
- Đề thi GDCD 9 (có đáp án)
- Đề thi Tin học 9 (có đáp án)
- Đề thi Công nghệ 9 (có đáp án)