Bộ đề thi vào lớp 10 chuyên Toán các năm có đáp án
Tổng hợp đề thi vào lớp 10 môn Toán hệ chuyên chọn lọc, có đáp án được sưu tầm từ các trường chuyên trên cả nước. Hi vọng qua bộ đề ôn thi chuyên Toán này sẽ giúp bạn tìm hiểu về cấu trúc đề thi, từ đó ra kế hoạch ôn tập & đạt được kết quả cao trong kì thi tuyển sinh vào lớp 10.
Mục lục Đề thi vào 10 chuyên Toán
Đề thi vào lớp 10 môn Toán chuyên Phan Bội Châu năm 2012-2013
Đề thi vào lớp 10 môn Toán chuyên Hoàng Văn Thụ năm 2013-2014
Đề thi vào lớp 10 môn Toán chuyên TP Hồ Chí Minh năm 2008-2009
Đề thi vào lớp 10 môn Toán chuyên Bà Rịa - Vũng Tàu năm 2016-2017
Sở Giáo dục và Đào tạo Hà Nội
Trường Đại học Sư phạm Hà Nội
Kì thi tuyển sinh vào lớp 10 THPT chuyên
Đề thi môn: Toán
Năm học: ......
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (2 điểm): Cho biểu thức với 0<a<1. Chứng minh rằng P=-1
Câu 2 (2,5 điểm): Cho parabol (P): y=-x2 và đường thẳng d:y=2mx-1 với m là tham số.
a) Tìm tọa độ giao điểm của d và (P) khi m=1 .
b) Chứng minh rằng với mỗi giá trị của m, d luôn cắt (P) tại hai điểm phân biệt A, B. Gọi y1, y2 là tung độ của A, B. Tìm m sao cho
Câu 3 (1,5 điểm): Một người đi xe máy từ địa điểm A đến địa điểm B cách nhau 120 km. Vận tốc trên quãng đường AB đầu không đổi, vận tốc trên
quãng đường AB sau bằng
vận tốc trên
quãng đường AB đầu. Khi đến B, người đó nghỉ 30 phút và trở lại A với vận tốc lớn hơn vận tốc trên
quãng đường AB đầu tiên lúc đi là 10 km/h . Thời gian kể từ lúc xuất phát tại A đến khi xe trở về A là 8,5 giờ. Tính vận tốc của xe máy trên quãng đường người đó đi từ B về A?
Câu 4 (3 điểm): Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
a) Chứng minh AMPC và BMPD là các tứ giác nội tiếp
b) Chứng minh
c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.
Câu 5 (1 điểm): Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng:
Sở Giáo dục và Đào tạo Nghệ An
Trường THPT Chuyên Phan Bội Châu
Kì thi tuyển sinh vào lớp 10 THPT chuyên
Đề thi môn: Toán
Năm học: ......
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (7 điểm):
a) Giải phương trình:
b) Giải hệ phương trình:
Câu 2 (3 điểm): Tìm các số tự nhiên x và y thoả mãn 2x+1=y2
Câu 3 (2 điểm): Cho ba số dương x,y,z thoả mãn . Chứng minh rằng:
Câu 4 (6 điểm): Cho đường tròn tâm O, đường kính AB. Trên đường tròn lấy điểm D khác A và . Trên đường kính AB lấy điểm C (C khác A, B) và kẻ CH vuông góc với AD tại H. Phân giác trong của góc DAB cắt đường tròn tại E và cắt CH tại F. Đường thẳng DF cắt đường tròn tại điểm thứ hai N.
a) Chứng minh tứ giác AFCN nội tiếp đường tròn và ba điểm N, C, E thẳng hàng.
b) Cho AD = BC, chứng minh DN đi qua trung điểm của AC.
Câu 5 (2 điểm): Một tứ giác lồi có độ dài bốn cạnh đều là số tự nhiên sao cho tổng ba số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất hai cạnh bằng nhau.
Sở Giáo dục và Đào tạo Phú Thọ
Trường THPT Chuyên Hùng Vương
Kì thi tuyển sinh vào lớp 10 THPT chuyên
Đề thi môn: Toán
Năm học: ......
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (1,5 điểm):
a) Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2+4 và n2+16 là các số nguyên tố thì n chia hết cho 5.
b) Tìm nghiệm nguyên của phương trình: x2-2y(x-y)=2(x+1)
Câu 2 (2 điểm):
a) Rút gọn biểu thức:
b) Tìm m để phương trình: (x-2)(x-3)(x+4)(x+5)=m có 4 nghiệm phân biệt.
Câu 3 (2 điểm):
a) Giải phương trình:
b) Giải hệ phương trình:
Câu 4 (3,5 điểm): Cho đường tròn (O; R) và dây cung cố định. Điểm A di động trên cung lớn
sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.
a) Chứng minh KA là phân giác trong góc và tứ giác BHCK nội tiếp.
b) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính diện tích lớn nhất của tứ giác đó theo R.
c) Chứng minh AK luôn đi qua một điểm cố định.
Câu 5 (1,0 điểm): Cho 3 số thực dương x,y,z thoả mãn . Tìm giá trị nhỏ nhất của biểu thức:
Xem thêm các đề thi vào lớp 10 môn Toán có đáp án hay khác:
- Bộ Đề thi vào lớp 10 môn Toán năm 2020 - 2021 có đáp án (Trắc nghiệm - Tự luận)
- Bộ Đề thi vào lớp 10 môn Toán năm 2020 - 2021 có đáp án (Tự luận)
- Bộ Đề thi vào lớp 10 môn Toán TP Hà Nội năm 2020 - 2021 có đáp án
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Đề thi vào lớp 10 môn Toán (có đáp án) được các Giáo viên hàng đầu biên soạn theo cấu trúc ra đề thi Trắc nghiệm, Tự luận mới giúp bạn ôn luyện và giành được điểm cao trong kì thi vào lớp 10 môn Toán.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 9
- Soạn Văn 9 (bản ngắn nhất)
- Văn mẫu lớp 9
- Đề kiểm tra Ngữ Văn 9 (có đáp án)
- Giải bài tập Toán 9
- Giải sách bài tập Toán 9
- Đề kiểm tra Toán 9
- Đề thi vào 10 môn Toán
- Chuyên đề Toán 9
- Giải bài tập Vật lý 9
- Giải sách bài tập Vật Lí 9
- Giải bài tập Hóa học 9
- Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
- Giải bài tập Sinh học 9
- Giải Vở bài tập Sinh học 9
- Chuyên đề Sinh học 9
- Giải bài tập Địa Lí 9
- Giải bài tập Địa Lí 9 (ngắn nhất)
- Giải sách bài tập Địa Lí 9
- Giải Tập bản đồ và bài tập thực hành Địa Lí 9
- Giải bài tập Tiếng anh 9
- Giải sách bài tập Tiếng Anh 9
- Giải bài tập Tiếng anh 9 thí điểm
- Giải sách bài tập Tiếng Anh 9 mới
- Giải bài tập Lịch sử 9
- Giải bài tập Lịch sử 9 (ngắn nhất)
- Giải tập bản đồ Lịch sử 9
- Giải Vở bài tập Lịch sử 9
- Giải bài tập GDCD 9
- Giải bài tập GDCD 9 (ngắn nhất)
- Giải sách bài tập GDCD 9
- Giải bài tập Tin học 9
- Giải bài tập Công nghệ 9