Bài 81 trang 51 SBT Toán 7 Tập 2



Bài 9: Tính chất ba đường cao của tam giác

Bài 81 trang 51 sách bài tập Toán 7 Tập 2: Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (hình dưới)

Quảng cáo

a. Chứng minh rằng A là trung điểm của EF.

b. Các đường cao của tam giác ABC là các đường trung trực của tam giác nào?

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Xét ΔABC và ΔACE, ta có:

∠(ACB) = ∠(CAE) (so le trong, AE // BC)

AC cạnh chung

∠(CAB) = ∠(ACE) (so le trong, CE // AB)

Suy ra: ΔABC = ΔACE (g.c.g)

⇒ AE = BC (1)

Quảng cáo

Xét ΔABC và ΔABF, ta có:

∠(ABC) = ∠(BAF) (so le trong, AF // BC)

AB cạnh chung

∠(BAC) = ∠(ABF) (so le trong, BF // AC)

Suy ra: ΔABC = ΔBAF (g.c.g)

⇒ AF = BC (2)

Từ (1) và (2) suy ra: AE = AF

Vậy A là trung điểm của EF.

b. Kẻ AH ⊥ BC.

Ta có: EF // BC (gt) ⇒ AH ⊥ EF

Lại có: AE = AF (chứng minh trên)

Vậy đường cao AH là đường trung trực của EF.

Vì B là trung điểm DF và DF // AC nên đường cao kẻ từ đỉnh B của ΔABC là đường trung trực DF.

Vì C là trung điểm DE và DE // AB nên đường cao kẻ từ đỉnh C của ΔABC là đường trung trực của DE.

Quảng cáo

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) khác:

Mục lục Giải sách bài tập Toán 7 (SBT Toán 7) theo chương:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Giải sách bài tập Toán 7 | Giải sbt Toán 7 của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-9-tinh-chat-ba-duong-cao-cua-tam-giac.jsp