Bài 74 trang 51 SBT Toán 7 Tập 2



Bài 9: Tính chất ba đường cao của tam giác

Bài 74 trang 51 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A, đường cao AH. Tìm trực tâm của tam giác ABC, AHB, AHC.

Quảng cáo
Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

*Tam giác ABC có (BAC) = 90o

Vì CA là đường cao xuất phát từ đỉnh B nên giao điểm của hai đường này là A.

Vậy A là trực tâm của ΔABC.

*Tam giác AHB có (AHB) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, BH là đường cao xuất phát từ đỉnh B nên giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHB.

*Tam giác AHC có (AHC) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, CH là đường cao xuất phát từ đỉnh C nên giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHC.

Quảng cáo

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) khác:

Quảng cáo

Mục lục Giải sách bài tập Toán 7 (SBT Toán 7) theo chương:

Loạt bài Giải sách bài tập Toán 7 | Giải sbt Toán 7 của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-9-tinh-chat-ba-duong-cao-cua-tam-giac.jsp