Bài 6 trang 38 SGK Toán 9 Tập 2



Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0)

Luyện tập (trang 38-39)

Bài 6 (trang 38 SGK Toán 9 tập 2): Cho hàm số y = f(x) = x2.

a) Vẽ đồ thị của hàm số đó.

Quảng cáo

b) Tính các giá trị f(-8); f(-1,3); f(-0,75); f(1,5).

c) Dùng đồ thị để ước lượng các giá trị (0,5)2; (-1,5)2; (2,5)2.

d) Dùng đồ thị để ước lượng vị trí các điểm trên trục hoành biểu diễn các số √3 ; √7.

Lời giải

a) Ta có bảng giá trị:

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Vẽ đồ thị hàm số :

Trên hệ trục tọa độ xác định các điểm (-2 ; 4) ; (-1 ; 1) ; (0 ; 0) ; (1 ; 1) ; (2 ; 4). Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x2.

Quảng cáo
Giải bài tập Vật lý lớp 12 nâng cao

b) f(-8) = (-8)2 = 64

f(-1,3) = (-1,3)2 = 1,69

f(-0,75) = (-0,75)2 = 0,5625

f(1,5) = (1,5)2 = 2,25.

c)

Giải bài tập Vật lý lớp 12 nâng cao

Trên đồ thị hàm số, lấy các điểm M, N, P có hoành độ lần lượt bằng -1,5 ; 0,5 và 2,5.

Dựa vào đồ thị nhận thấy các điểm M, N, P có tọa độ là : M(-1,5 ; 2,25) ; N(0,5 ; 0,25) ; P(2,5 ; 6,25).

Vậy (0,5)2 = 2,25 ; (-1,5)2 = 2,25 ; (2,5)2 = 6,25.

d)

Giải bài tập Vật lý lớp 12 nâng cao

Ta có : (√3)2 = 3 ; (√7)2 = 7

⇒ Các điểm (√3 ; 3) và (√7 ; 7) thuộc đồ thị hàm số y = x2.

Để xác định các điểm √3 ; √7 trên trục hoành, ta lấy trên đồ thị hàm số các điểm A, B có tung độ lần lượt là 3 và 7.

Chiếu vuông góc các điểm A, B trên trục hoành ta được các điểm √3 ; √7 trên đồ thị hàm số.

Quảng cáo

Tham khảo các lời giải Toán 9 Bài 2 khác:

Mục lục Giải bài tập Toán 9 theo chương:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Giải bài tập Toán lớp 9 | Để học tốt Toán 9 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 9 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 9Để học tốt Toán lớp 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


do-thi-cua-ham-so-y-ax2.jsp