Các phép tính với đa thức nhiều biến (Lý thuyết Toán lớp 8) | Cánh diều

Với tóm tắt lý thuyết Toán lớp 8 Bài 2: Các phép tính với đa thức nhiều biến sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.

Các phép tính với đa thức nhiều biến (Lý thuyết Toán lớp 8) | Cánh diều

Quảng cáo

Lý thuyết Các phép tính với đa thức nhiều biến

1. Cộng hai đa thức

Để cộng hai đa thức theo hàng ngang, ta có thể làm như sau:

- Viết tổng hai đa thức theo hàng ngang;

- Nhóm các đơn thức: đồng dạng với nhau

- Thực hiện phép tính trong từng nhóm, rồi cộng các kết quả với nhau.

Ví dụ: Cho hai đa thức A = x2 + 2xy + y2 và B = x2 – 2xy + y2

Ta có: A + B = ( x2 + 2xy + y2) + ( x2 – 2xy + y2)

                 = x2 + 2xy + y2 + x2 – 2xy + y2

                 = (x2 + x2) + (2xy – 2xy) + (y2 + y2)

                 = 2x2 + 2y2

2. Trừ hai đa thức

Để trừ hai đa thức P cho đa thức Q theo hàng ngang, ta có thể làm như sau:

- Viết P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc;

- Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn của đa thức Q, nhóm các đơn thức đồng dạng với nhau;

- Thực hiện phép tính trong từng nhóm, rồi cộng các kết quả với nhau.

Quảng cáo

Ví dụ: Cho hai đa thức A = x2 + 2xy + y2 và B = x2 – 2xy

Ta có:

A – B = ( x2 + 2xy + y2) – ( x2 – 2xy)

= x2 + 2xy + y2 – x2 + 2xy

= (x2 - x2) + (2xy + 2xy) + y2

= 4xy + y2

3. Nhân hai đa thức

3.1. Nhân hai đơn thức

Để nhân hai đơn thức nhiều biến ta có thể làm như sau:

- Nhân các hệ số với nhau và nhân các phần biến với nhau:

Quảng cáo

- Thu gọn đơn thức nhận được ở tích.

Ví dụ: 3xy . 2x2y3 = (3 . 2)(xyx2y3) = 6x3y4.

3.2. Nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các kết quả với nhau.

Ví dụ:

xy2 . (x + y + y2) = xy2x + xy2y + xy2 y2

= x2y2 + xy3 + xy4.

3.3. Nhân hai đa thức

Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau/

Ví dụ: (x + y)(x – y) = x2 – xy + xy – y2 = x2 – y2 .

4. Chia đa thức cho đơn thức

4.1. Phép chia hết một đơn thức cho một đơn thức

- Đơn thức A chia hết cho đơn thức B (B ≠ 0) khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

Quảng cáo

- Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B), ta có thể làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B;

+ Chia lũy thừa của từng biến trong đơn thức A cho từng lũy thừa của cùng biến đó trong B;

+ Nhân các kết quả vừa tìm được với nhau.

Ví dụ:

(20x4y2z3) : (4xyz) = (20 : 4)(x4 : x)(y2 : y)(z3 : z)

= 5x3yz2

4.2. Phép chia hết một đa thức cho một đơn thức

- Đa thức A chia hết cho đơn thức B (B ≠ 0) khi mỗi đơn thức của A chia hết cho B.

- Muốn chia đa thức A cho đơn thức B (trường hợp A chia hết cho B), ta chia mỗi đơn thức của A cho B rồi cộng các kết quả với nhau.

Ví dụ:

(15x2y3 + 25xy2 – 35x4y4) : (5xy)

= (15x2y3 : 5xy) + (25xy2 : 5xy) – (35x4y4 : 5xy)

= 3xy2 + 5y – 7x3y3

Bài tập Các phép tính với đa thức nhiều biến

Bài 1. Thực hiện phép tính:

a) (x – y)(x2 + 2xy + y2);

b) (x + 2y)(3xy +5y2 + x).

Hướng dẫn giải

a) (x – y)(x2 + 2xy + y2)

= x . x2 + x . 2xy + x . y2 + (–y) . x2 + (–y) . 2xy + (–y) . y2

= x3 + 2x2y + xy2 – x2y – 2xy2 – y3

= x3 + x2y – xy2 – y3

b) (x + 2y)(3xy +5y2 + x)

= x . 3xy + x . 5y2  + x . x + 2y . 3xy + 2y . 5y2  + 2y . x

= 3x2y + 5xy2 + x2 + 6xy2 + 10y3 + 2xy

= 3x2y + 11xy2 + x2 + 10y3 + 2xy

Bài 2. Rút gọn rồi tính giá trị biểu thức:

A = (x + y)(x – y) + (xy4 – x3y2) : (xy2) tại x = 1,2; y = 3

Hướng dẫn giải

A = (x + y)(x – y) + (xy4 – x3y2) : (xy2) + 5xy

= x . x – x . y + y . x  + y . (–y) + (xy4 : xy2) – (x3y2 : xy2) + 5xy

= x2 – xy + xy – y2 + y2 – x2 + 5xy

= 5xy

Thay x = 1,2; y = 3 vào biểu thức A, ta được:

A = 5 . 1,2 . 3 = 18.

Vậy với x = 1,2; y = 3 thì A = 18.

Học tốt Các phép tính với đa thức nhiều biến

Các bài học để học tốt Các phép tính với đa thức nhiều biến Toán lớp 8 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 8 Chân trời sáng tạo hay khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 Cánh diều hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Cánh diều (Tập 1 & Tập 2) (NXB ĐH Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Cánh diều khác
Tài liệu giáo viên