Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm



Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm

A. Phương pháp giải

Quảng cáo
2005 - Toán Lý Hóa

Cho đường thẳng d: ax + by + c = 0 và điểm M(x0; y0) . Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M :

- Nếu điểm M ∈ d thì đường thẳng d’ trùng với đường thẳng d.

- Nếu điểm M không thuộc d; ta làm như sau :

+ Bước 1: Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên d’//d

⇒ đường thẳng d’ có dạng : ax + by + c’ = 0 ( c’ ≠ c)

+ Bước 2: Lấy một điểm A thuộc d. Tìm điểm A’ đối xứng với A qua M .

Khi đó điểm A’ thuộc đường thẳng d’.

+ Bước 3: Thay tọa độ điểm A’vào phương trình đường thẳng d’ ta tìm được c’. Từ đó suy ra phương trình đường thẳng d’.

B. Ví dụ minh họa

Ví dụ 1: Cho đường thẳng d: 2x + 3y - 2 = 0 và điểm M( 2; -1). Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M .

A. 2x + 3y = 0    B. 2x + 3y - 1 = 0    C. 2x + 3y + 2 = 0    D. 2x + 3y - 4 = 0

Lời giải

+ Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên đường thẳng d’ song song với đường thẳng d.

⇒ Đường thẳng d’ có dạng: 2x + 3y + c = 0 ( c ≠ -2) .

+ Lấy điểm A(1; 0) thuộc đường thẳng d.

Gọi A’ là điểm đối xứng với A qua M thì M là trung điểm của AA’

⇒ Tọa độ điểm A’ : Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A’(3; -2)

+ Vì điểm A’ thuộc đường thẳng d’nên thay tọa độ điểm A’ vào đường thẳng d’ ta được :

2.3 + 3.(-2) + c = 0 ⇔ c = 0 .

Vậy phương trình đường thẳng d’là 2x + 3y = 0

Chọn A.

Quảng cáo

Ví dụ 2: Cho đường thẳng d: x - y + 2 = 0 và điểm M (1; 3) .Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M ?

A. x - y = 0    B. x - y + 2 = 0    C. x - y + 3 = 0    D. x - y - 4 = 0

Lời giải

Thay tọa độ điểm M vào phương trình đường thẳng d ta được :

    1 - 3 + 2 = 0 ( đúng )

⇒ Điểm M thuộc đường thẳng d.

⇒ Phép đối xứng qua điểm M biến đường thẳng d thành chính nó.

Vậy phương trình đường thẳng d’ cần tìm là d’ ≡ d: x - y + 2 = 0

Chọn B.

Ví dụ 3: Cho đường thẳng d: 3x + y - 4 = 0 và điểm M( 0; 2). Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M .

A. 3x + y + 4 = 0    B. 3x + y - 1 = 0    C. 3x + y = 0    D. 3x + y - 4 = 0

Lời giải

+ Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên đường thẳng d’ song song với đường thẳng d.

⇒ Đường thẳng d’có dạng: 3x + y + c = 0 ( c ≠ - 4) .

+ Lấy điểm A(0; 4) thuộc đường thẳng d.

Gọi A’ là điểm đối xứng với A qua M thì M là trung điểm của AA’

⇒ Tọa độ điểm A’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A’(0; 0 )

+ Vì điểm A’ thuộc đường thẳng d’nên thay tọa độ điểm A’ vào đường thẳng d’ ta được : 3.0 + 0 + c ⇔ c = 0 .

Vậy phương trình đường thẳng d’ là 3x + y = 0

Chọn C.

Ví dụ 4: Cho đường thẳng d: x - y + 4 = 0 và đường thẳng d’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 . Hỏi có bao nhiêu điểm M thỏa mãn qua đối xứng tâm M biến đường thẳng d thành đường thẳng d’.

A. 0    B. 1.    C. 2    D. Vô số

Lời giải

+ Ta đưa đường thẳng d’ về dạng tổng quát:

Đường thẳng ( d’) : Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

⇒ Phương trình ( d) : 1(x - 0) - 1(y - 4) = 0 hay x - y + 4 = 0.

⇒ đường thẳng d trùng với đường thẳng d’.

+ Để qua đối xứng tâm M biến đường thẳng d thành d’ - tức là biến đường thẳng d thành chính nó thì điểm M phải nằm trên đường thẳng d.

⇒ Có vô số điểm M thỏa mãn đầu bài- đó là các điểm nằm trên đường thẳng d.

Chọn D.

Quảng cáo

Ví dụ 5 : Cho đường thẳng d: 2x + 3y - 6 = 0 và đường thẳng d’. 2x + 3y + 8 = 0 . Có điểm M sao cho qua đối xứng tâm M biến đường thẳng d thành đường thẳng d’. Hỏi điểm M thuộc đường thẳng nào?

A. 2x + 3y + 1 = 0    B. 2x + 3y + 2 = 0    C. 2x - 3y - 2 = 0    D. 2x - 3y = 0

Lời giải

Gọi tọa độ điểm M (a; b).

+ Lấy điểm A( 3; 0) thuộc đường thẳng d,

+ Gọi điểm A’ đối xứng với A qua M . Khi đó A’ thuộc đường thẳng d’.

+ Ta có M là trung điểm AA’ nên ta có tọa độ của A’ và B’ là

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+ Mà A’( 2a - 3; 2b) ; thuộc đường thẳng d’: 2x + 3y + 8 = 0 nên thay tọa độ điểm này vào phương trình d’ ta được :

2(2a - 3) + 3.2b + 8 = 0 hay 4a + 6b + 2 ⇔ 2a + 3b + 1 = 0

⇒ Điểm M thuộc đường thẳng 2x + 3y + 1 = 0

Chọn A.

Ví dụ 6: Cho đường thẳng d: 3x - y + 9 = 0 và điểm M( 2; -1). Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M .

A. 3x - y = 0    B. 3x - y - 1 = 0    C. 3x - y + 2 = 0    D. 3x - y - 23 = 0

Lời giải

+ Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên đường thẳng d’ song song với đường thẳng d.

⇒ Đường thẳng d’có dạng: 3x - y + c = 0 ( c ≠ 9) .

+ Lấy điểm A(- 3; 0) thuộc đường thẳng d.

Gọi A’ là điểm đối xứng với A qua M thì M là trung điểm của AA’

⇒ Tọa độ điểm A’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A’(7; -2)

+ Vì điểm A’ thuộc đường thẳng d’nên thay tọa độ điểm A’ vào đường thẳng d’ta được : 3.7 - (-2) + c = 0 ⇔ c = - 23 .

Vậy phương trình đường thẳng d’là 3x - y - 23 = 0

Chọn D.

Ví dụ 7: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d: 2x - 5y + 10 = 0 qua điểm A( 5; 4)?

A. 2x - 5y + 20 = 0    B. 2x - 5y + 1 = 0    C. 2x - 5y + 10 = 0    D. 2x - 5y + 8 = 0

Lời giải

+ Ta có: 2.5 - 5.4 + 10 = 0

⇒ điểm A thuộc đường thẳng d.

⇒ Qua phép đối xứng tâm A biến đường thẳng d thành chính nó.

Chọn C.

Ví dụ 8 : Cho hai đường thẳng d1 : x + y - 1 = 0 ; d2 : x - 3y + 3 = 0. Phương trình đường thẳng d đối xứng với d1 qua đường thẳng d2 là:

A. x - 7y + 1 = 0    B. x + 7y + 1 = 0    C. 7x + y + 1 = 0    D. 7x - y + 1 = 0

Lời giải:

+ Giao điểm của d1 và d2 là nghiệm của hệ

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A(0; 1)

Lấy M(1; 0) ∈ d1 . Tìm M’ đối xứng M qua d2

+ Viết phương trình đường thẳng ∆ đi qua M và vuông góc với d2:

∆: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

⇒ Phương trình ∆: 3(x - 1) + 1(y - 0) = 0 hay 3x + y - 3 = 0

+ Gọi H là giao điểm của ∆ và đường thẳng d2. Tọa độ H là nghiệm của hệ

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+Ta có H là trung điểm của MM’. Từ đó suy ra tọa độ

+Viết phương trình đường thẳng d đi qua 2 điểm A và M’ : điểm đi qua A(0 ;1), vectơ chỉ phương vectơ pháp tuyến

Chọn D.

C. Bài tập vận dụng

Câu 1: Cho đường thẳng d: 2x - 5y + 10= 0 và điểm M( 1; 1). Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M .

A. 2x - 5y = 0    B. 2x - 5y + 1 = 0    C. 2x - 5y - 4 = 0    D. 2x - 5y + 4 = 0

Đáp án: C

Trả lời:

+ Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên đường thẳng d’ song song với đường thẳng d.

⇒ Đường thẳng d’có dạng: 2x - 5y + c = 0 ( c ≠ 10) .

+ Lấy điểm A(0; 2) thuộc đường thẳng d.

Gọi A’ là điểm đối xứng với A qua M thì M là trung điểm của AA’

⇒ Tọa độ điểm A’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A’(2; 0 )

+ Vì điểm A’ thuộc đường thẳng d’nên thay tọa độ điểm A’ vào đường thẳng d’ ta được : 2.2 - 5.0 + c ⇔ c = - 4 .

Vậy phương trình đường thẳng d’là 2x - 5y - 4 = 0

Câu 2: Cho đường thẳng d: x + 3y - 6 = 0 và đường thẳng d’: x + 3y - 2 = 0 . Có điểm M sao cho qua đối xứng tâm M biến đường thẳng d thành đường thẳng d’. Hỏi điểm M thuộc đường thẳng nào?

A. x + 3y - 4 = 0    B. x + 3y + 2 = 0    C. x - 3y - 2 = 0    D. x - 3y = 0

Đáp án: A

Trả lời:

Gọi tọa độ điểm M (a; b).

+ Lấy điểm A( 3; 1) thuộc đường thẳng d,

+ Gọi điểm A’ đối xứng với A qua M . Khi đó A’ thuộc đường thẳng d’.

+ Ta có M là trung điểm AA’ nên ta có tọa độ của A’ và B’ là

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+ Mà A’( 2a - 3; 2b - 1) ; thuộc đường thẳng d’: x + 3y - 2 = 0 nên thay tọa độ điểm này vào phương trình d’ ta được :

2a - 3 + 3(2b - 1) – 2 = 0 hay 2a + 6b - 8 = 0 ⇔ a + 3b - 4 = 0

⇒ Điểm M thuộc đường thẳng x + 3y - 4 = 0

Câu 3: Cho đường thẳng d: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 và đường thẳng d’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 . Hỏi có bao nhiêu điểm M thỏa mãn qua đối xứng tâm M biến đường thẳng d thành đường thẳng d’.

A. 0    B. 1.    C. 2    D. Vô số

Đáp án: D

Trả lời:

+ Đưa đường thẳng d về dạng tổng quát:

(d)Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

⇒ Phương trình đường thẳng d: 3( x – 1) + 4( y + 3) = 0

Hay 3x + 4y + 9 = 0

+ Ta đưa đường thẳng d’ về dạng tổng quát:

Đường thẳng ( d’) : Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

⇒ Phương trình ( d) : 3(x + 3) + 4(y - 0) = 0 hay 3x + 4y + 9 = 0.

⇒ đường thẳng d trùng với đường thẳng d’.

+ Để qua đối xứng tâm M biến đường thẳng d thành d’- tức là biến đường thẳng d thành chính nó thì điểm M phải nằm trên đường thẳng d.

⇒ Có vô số điểm M thỏa mãn đầu bài- đó là các điểm nằm trên đường thẳng d.

Câu 4: Cho đường thẳng d: x - 5y + 5 = 0 và điểm M ( 5; 2) .Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M ?

A. x - 5y = 0    B. x - 5y + 2 = 0    C. x - 5y + 3 = 0    D. x - 5y + 5 = 0

Đáp án: D

Trả lời:

Thay tọa độ điểm M vào phương trình đường thẳng d ta được :

    5 - 5.2 + 5 = 0 ( đúng )

⇒ Điểm M thuộc đường thẳng d.

⇒ Phép đối xứng qua điểm M biến đường thẳng d thành chính nó.

Vậy phương trình đường thẳng d’ cần tìm là d’ ≡d: x - 5y + 5 = 0

Câu 5: Cho đường thẳng d: 4x - y + 8 = 0 và điểm M( 2; -1). Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M .

A. 4x - y - 26 = 0    B. 4x - y - 10 = 0    C. 4x - y + 20 = 0    D. 4x - y - 4 = 0

Đáp án: A

Trả lời:

+ Do đường thẳng d’ đối xứng với đường thẳng d qua điểm M nên đường thẳng d’ song song với đường thẳng d.

⇒ Đường thẳng d’có dạng: 4x - y + c = 0 ( c ≠ 8 ) .

+ Lấy điểm A(-2; 0) thuộc đường thẳng d.

Gọi A’ là điểm đối xứng với A qua M thì M là trung điểm của AA’

⇒ Tọa độ điểm A’: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A’(6; -2)

+ Vì điểm A’ thuộc đường thẳng d’ nên thay tọa độ điểm A’ vào đường thẳng d’ ta được : 4.6 - (-2) + c = 0 ⇔ c = - 26.

Vậy phương trình đường thẳng d’là 4x - y - 26 = 0

Câu 6: Cho đường thẳng d: Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 và điểm M ( 7; -4) .Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm M ?

A. 2x - 3y - 4 = 0    B. 2x - 3y = 0    C. 2x + 3y + 4 = 0    D. 2x + 3y - 2 = 0

Đáp án: D

Trả lời:

Thay tọa độ điểm M vào phương trình đường thẳng d ta được :

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ t= 2

⇒ Điểm M thuộc đường thẳng d.

⇒ Phép đối xứng qua điểm M biến đường thẳng d thành chính nó.

Vậy phương trình đường thẳng d’ cần tìm là d’ ≡d.

Ta viết đường thẳng d về dạng tổng quát:

( d) : Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

⇒ Phương trình đường thẳng d: 2( x - 1) + 3( y - 0) = 0 hay 2x + 3y - 2 = 0

Câu 7: Cho đường thẳng (d): x - 2y + 3 = 0 và A(3; 4). Tìm điểm M thuộc đường thẳng d sao cho AM= 5?

A. M( 1; -1)    B. M(Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ; Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 )    C. M(-1; 1)    D. Cả B và C đúng

Đáp án: D

Trả lời:

Gọi tọa độ điểm M(a;b).

Do M thuộc d nên a - 2b + 3 = 0 (1).

Khoảng cách hai điểm A và M là: AM= Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 = 5

⇔ (a - 3)2 + ( b - 4)2 = 25 (2)

Từ (1) suy ra: a = 2b - 3 thế vào ( 2) ta được: ( 2b - 3 - 3)2 + (b - 4)2= 25

⇔ ( 2b - 6)2 + (b - 4)2 = 25

⇔ 4b2 – 24b + 36 + b2 - 8b + 16 - 25 = 0

⇔ 5b2 - 32b + 27 = 0 ⇔ b = 1 hoặc b = Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+ Với b = 1 thì a = - 1 ⇒ M(-1; 1)

+ Với b = Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ a = Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ M(Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ; Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 )

Vậy có hai điểm M thỏa mãn là M( -1; 1) và M(Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ; Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 )

Câu 8: Cho hai đường thẳng d: 2x - y + 3 = 0 và ∆: x + 3y - 2 = 0. Phương trình đường thẳng d’ đối xứng với d qua ∆ là:

A. 11x + 13y - 2 = 0    B. 11x - 2y + 13 = 0    C. 13x - 11y + 2 = 0    D. 11x + 2y - 13 = 0

Đáp án: B

Trả lời:

+ Giao điểm của d và ∆ là nghiệm của hệ

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 ⇒ A( - 1; 1)

+Lấy M(0; 3) ∈ d . Tìm M’ đối xứng M qua ∆

Viết phương trình đường thẳng đi qua M và vuông góc với ∆:

+Gọi H là giao điểm của ∆’ và đường thẳng ∆. Tọa độ H là nghiệm của hệ

Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+ Ta có H là trung điểm của MM’.

Từ đó suy ra tọa độ Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

+ Viết phương trình đường thẳng d’ đi qua 2 điểm A và M’: điểm đi qua A(-1 ;1), vectơ chỉ phương Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 vectơ pháp tuyến Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10

d' : Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 (x + 1) - Viết phương trình đường thẳng d’ đối xứng với đường thẳng d qua 1 điểm - Toán lớp 10 (y - 1) = 0 ⇔ 11x - 2y + 13 = 0

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com

GIẢM GIÁ 75% KHÓA HỌC VIETJACK HỖ TRỢ DỊCH COVID

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 199K cho teen 2k5 tại khoahoc.vietjack.com

Toán lớp 10 - Thầy Phạm Như Toàn

4.5 (243)

799,000đs

250,000 VNĐ

Vật Lý 10 - Thầy Quách Duy Trường

4.5 (243)

799,000đ

250,000 VNĐ

Tiếng Anh lớp 10 - Thầy Quang Hưng

4.5 (243)

799,000đ

250,000 VNĐ

Hóa Học lớp 10 - Cô Nguyễn Thị Thu

4.5 (243)

799,000đs

250,000 VNĐ

Hóa học lớp 10 - cô Trần Thanh Thủy

4.5 (243)

799,000đ

250,000 VNĐ

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-mat-phang.jsp


2005 - Toán Lý Hóa