Lý thuyết Khái niệm về khối đa diện lớp 12 (hay, chi tiết)
Bài viết Lý thuyết Khái niệm về khối đa diện lớp 12 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Khái niệm về khối đa diện.
Lý thuyết Khái niệm về khối đa diện
A. Tóm tắt lý thuyết
I. KHỐI LĂNG TRỤ VÀ KHỐI CHÓP
Khối lăng trụ là phần không gian được giới hạn bởi một hình lăng trụ kể cả hình lăng trụ ấy.
Khối chóp là phần không gian được giới hạn bởi một hình chóp kể cả hình chóp ấy.
Khối chóp cụt là phần không gian được giới hạn bởi một hình chóp cụt kể cả hình chóp cụt ấy.
II. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN
1. Khái niệm về hình đa diện
Hình đa diện là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất:
• Hai đa giác phân biệt chỉ có thể hoặc không có điểm chung, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung.
• Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác.
Mỗi đa giác như trên được gọi là một mặt của hình đa diện.
Các đỉnh, các cạnh của đa giác ấy theo thứ tự gọi là các đỉnh, các cạnh của hình đa diện.
2. Khái niệm về khối đa diện
• Khối đa diện là phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó.
• Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Tập hợp các điểm ngoài được gọi là miền ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện ứng với đa diện ấy được gọi là điểm trong của khối đa diện. Tập hợp các điểm trong được gọi là miền trong của khối đa diện.
• Mỗi khối đa diện được xác định bởi một hình đa diện ứng với nó. Ta cũng gọi đỉnh, cạnh, mặt, điểm trong, điểm ngoài… của một khối đa diện theo thứ tự là đỉnh, cạnh, mặt, điểm trong, điểm ngoài… của hình đa diện tương ứng.
Ví dụ
- Các hình dưới đây là những khối đa diện:
- Các hình dưới đây không phải là những khối đa diện:
Giải thích: Hình a không phải là hình đa diện vì tồn tại cạnh không phải là cạnh chung của 2 mặt; Hình b không phải là hình đa diện vì có một điểm đặc biệt trong hình, điểm đó không phải là đỉnh chung của 2 đa giác; Hình c không phải là hình đa diện vì tồn tại một cạnh là cạnh chung của bốn đa giác.
III . HAI ĐA DIỆN BẰNG NHAU
1. Phép dời hình trong không gian
• Trong không gian, quy tắc đặt tương ứng mỗi điểm M với điểm M' xác định duy nhất được gọi là một phép biến hình trong không gian.
• Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý.
a) Phép tịnh tiến theo vectơ v→, là phép biến hình biến mỗi điểm M thành điểm M' sao cho MM'→ = v→. Kí hiệu là Tv→ .
b) Phép đối xứng qua mặt phẳng (P) là phép biến hình biến mỗi điểm thuộc (P) thành chính nó, biến mỗi điểm M không thuộc (P) thành điểm M' sao cho (P) là mặt phẳng trung trực của MM'.
Nếu phép đối xứng qua mặt phẳng (P) biến hình (H) thành chính nó thì (P) được gọi là mặt phẳng đối xứng của (H).
c) Phép đối xứng tâm O là phép biến hình biến điểm O thành chính nó, biến mỗi điểm M khác O thành điểm M' sao cho O là trung điểm của MM'.
Nếu phép đối xứng tâm O biến hình (H) thành chính nó thì O được gọi là tâm đối xứng của (H).
d) Phép đối xứng qua đường thẳng Δ là là phép biến hình biến mọi điểm thuộc đường thẳng Δ thành chính nó, biến mỗi điểm M không thuộc Δ thành điểm M' sao cho Δ là đường trung trực của MM'.
Nếu phép đối xứng qua đường thẳng Δ biến hình (H) thành chính nó thì Δ được gọi là trục đối xứng của (H).
Nhận xét
• Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình.
• Phép dời hình biến đa diện (H) thành đa diện (H'), biến đỉnh, cạnh, mặt của (H) thành đỉnh, cạnh, mặt tương ứng của (H').
Ví dụ: Cho hình lập phương ABCD.A'B'C'D'. Khi đó:
- Các hình chóp A.A'B'C'D' và C'.ABCD bằng nhau (vì qua phép đối xứng tâm O hình chóp A.A'B'C'D' biến thành hình chóp C'.ABCD).
- Các hình lăng trụ ABC.A'B'C' và AA'D'.BB'C' bằng nhau (vì qua phép đối xứng qua mặt phẳng (AB'C'D) thì hình lăng trụ ABC.A'B'C' biến thành hình lăng trụ AA'D'.BB'C').
2. Hai hình bằng nhau
Hai hình được gọi là nếu có một phép dời hình biến hình này thành hình kia.
Đặc biệt, hai đa diện được gọi là bằng nhau nếu có một phép dời hình biến đa diện này đa diện kia.
IV. PHÂN CHIA VÀ LẮP GHÉP CÁC KHỐI ĐA DIỆN
Nếu khối đa diện (H) là hợp của hai khối đa diện (H1) và (H2) sao cho (H1) và (H2) không có chung điểm trong nào thì ta nói có thể phân chia được khối đa diện (H) thành hai khối đa diện (H1) và (H2). Khi đó ta cũng nói có thể ghép hai khối đa diện (H1) và (H2) để được khối đa diện (H.
Ví dụ: 1 Với khối chóp tứ giác S.ABCD, xét hai khối chóp tam giác S.ABC và S.ACD. Ta thấy rằng:
- Hai khối chóp S.ABC và S.ACD không có điểm trong chung (tức là không tồn tại điểm trong của khối chóp này là điểm trong của khối chóp kia và ngược lại).
- Hợp của hai khối chóp S.ABC và S.ACD chính là khối chóp S.ABCD
Vậy khối chóp S.ABCD được phân chia thành hai khối chóp S.ABC và S.ACD hay hai khối chóp S.ABC và S.ACD được ghép lại thành khối chóp S.ABCD
Ví dụ 2. Cắt khối lăng trụ ABC.A'B'C' bởi mặt phẳng (A'BC). Khi đó, khối lăng trụ được phân chia thành hai khối đa diện A'ABC và A'BCC'B'.
Nếu ta cắt khối chóp A'BCC'B' bởi mặt phẳng (A'B'C) thì ta chia khối chóp A'BCC'B' thành hai khối chóp A'BCB' và A'CC'B'.
Vậy khối lăng trụ ABC.A'B'C' được chia thành ba khối tứ diện là A'ABC, A'BCB' và A'CC'B'.
MỘT SỐ KẾT QUẢ QUAN TRỌNG
Kết quả 1: Một khối đa diện bất kì có ít nhất 4 mặt.
Kết quả 2: Mỗi hình đa diện có ít nhất 4 đỉnh.
Kết quả 3: Mỗi hình đa diện có ít nhất 6 cạnh.
Kết quả 4: Mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất 3 cạnh.
Kết quả 5: Không tồn tại hình đa diện có 7 cạnh.
Kết quả 6: Cho (H) là đa diện mà các mặt của nó là những đa giác có p cạnh. Nếu số mặt của (H) là lẻ thì p phải là số chẵn.
Chứng minh: Gọi M là số các mặt của khối đa diện (H). Vì mỗi mặt của (H) có p cạnh nên M mặt sẽ có p.M cạnh. Nhưng do mỗi cạnh là cạnh chung của đúng hai đa giác nên số cạnh của (H) bằng C = (pM)/2. Vì M lẻ nên p phải là số chẵn.
Kết quả 7: (Suy ra từ chứng minh kết quả 6): Cho (H) là đa diện có M mặt, mà các mặt của nó là những đa giác có p cạnh. Khi đó số cạnh của (H) là C = (pM)/2.
Kết quả 8: Mỗi khối đa diện có các mặt là các tam giác thì tổng số các mặt của nó phải là một số chẵn.
Chứng minh: Gọi số cạnh và số mặt của khối đa diện lần lượt là C và M
Vì mỗi mặt có ba cạnh và mỗi cạnh là cạnh chung của đúng hai mặt nên ta có số cạnh của đa diện là chẵn.
Kết quả 9: Mỗi khối đa diện bất kì luôn có thể được phân chia được thành những khối tứ diện.
Kết quả 10: Nếu khối đa diện có mỗi đỉnh là đỉnh chung của ba cạnh thì số đỉnh phải là số chẵn. (Tổng quát: Một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của một số lẻ mặt thì tổng số đỉnh là một số chẵn)
Lý thuyết và bài tập trắc nghiệm có đáp án và lời giải chi tiết Toán lớp 12 khác:
- Lý thuyết Khái niệm về khối đa diện
- Lý thuyết Khối đa diện lồi và khối đa diện đều
- Lý thuyết Khái niệm về thể tích khối đa diện
- Lý thuyết tổng hợp chương Khối đa diện
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều