Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (c.c.c) lớp 7 (hay, chi tiết)
Bài viết Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (c.c.c) lớp 7 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (c.c.c).
Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (c.c.c) lớp 7 (hay, chi tiết)
Bài giảng: Bài 3: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh - Cô Vũ Xoan (Giáo viên VietJack)
A. Lý thuyết
1. Vẽ tam giác biết ba cạnh
Bài toán: Vẽ tam giác ABC, biết AB = 2cm, BC = 4cm, AC = 3cm
• Vẽ đoạn thẳng BC = 4cm.
• Trên cùng một nửa mặt phẳng bờ BC, vẽ cung tròn tâm B bán kính 2cm và cung tròn tâm C bán kính 3cm.
• Hai cung tròn trên cắt nhau tại A.
• Vẽ các đoạn thẳng AB, AC, ta được tam giác ABC.
2. Trường hợp bằng nhau cạnh – cạnh – cạnh
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – cạnh – cạnh.
ΔABC và ΔA'B'C' có:
Ví dụ 1:Cho hai tam giác ABC và ABD có, AB = BC = CA = 4cm, AD = BD = 2cm (D nằm khác phía C đối với AB). Chứng minh rằng
Lời giải:
Ví dụ 2:
Cho hình vẽ bên. Tìm chỗ sai trong bài làm của một học sinh như sauLời giải:
Ví dụ 3:
Cho đoạn thẳng MN. Vẽ cung tròn tâm M bán kính MN và cung tròn tâm N bán kính NM, chúng cắt nhau tại E, F. Chứng minh rằng: a) ΔMNE = ΔMNF b) ΔMEF = ΔNEFLời giải:
B. Bài tập
Bài 1: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán bính BA, chúng cắt nhau ở D (D và B nằm khác phía đối với bờ AC). Chứng minh rằng AD // BC
Lời giải:
Xét ΔABC và ΔCDA có AC chung
AB = CD (bán kính)
BC = DA (bán kính)
Nên ΔABC = ΔCDA (c-c-c)
⇒ ∠ACB = ∠CAD (hai góc tương ứng bằng nhau)
Mà hai góc này ở vị trí so le trong
Do đó AD // BC
Bài 2: Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh rằng AM vuông góc với BC.
Lời giải:
Xét ΔAMB và ΔAMC có:
AB = AC (gt)
AM chung
MB = MC (M là trung điểm của BC)
⇒ ΔAMB = ΔAMC (c-c-c)
Suy ra ∠BAM = ∠CAM; ∠AMB = ∠AMC (góc tương ứng bằng nhau)
Mà ∠AMB + ∠AMC = 180° (hai góc kề bù)
Nên ∠AMB = ∠AMC = 180°/2 = 90° hay AM ⊥ BC
C. Bài tập tự luyện
Bài 1. Cho hai tam giác HIK và DEG thỏa mãn HI = DE, IK = EG, HK = DG.
a) Chứng minh ∆HIK = ∆DEG.
b) Biết . Tính số đo góc và .
Bài 2. Cho , trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Vẽ các cung tròn tâm A và B có cùng bán kính sao cho chúng cắt nhau ở điểm I nằm trong góc xOy. Chứng minh OI là tia phân giác của góc .
Bài 3. Cho đoạn thẳng AB. Vẽ cung tròn tâm A bán kính AB, vẽ cung tròn tâm B bán kính BA, chúng cắt nhau tại hai điểm M và N. Chứng minh ∆ABM = ∆ABN và ∆AMN = ∆BMN.
Bài 4. Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?
A. HO // KI;
B. OK // IH;
C. Cả A và B đều sai;
D. Cả A và B đều đúng.
Bài 5. Cho tam giác ABC có AB = AC. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại điểm D.
a) Chứng minh ∆ABD = ∆ACD.
b) Gọi M là trung điểm của BC. Chứng minh A, M, D thẳng hàng.
Bài giảng: Bài 3: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh - Cô Nguyễn Anh (Giáo viên VietJack)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 có đáp án chi tiết hay khác:
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c)
- Bài tập Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c)
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc (g.c.g)
- Bài tập Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc (g.c.g)
- Lý thuyết Tam giác cân
- Bài tập Tam giác cân
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều