Bài tập Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c) lớp 7 (có đáp án)
Bài viết bài tập Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c) lớp 7 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c).
Bài tập Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c) lớp 7 (có đáp án)
Bài 1: Cho tam giác ABC và tam giác MNK có: AB = MN, ∠A = ∠M. Cần điều kiện gì để tam giác ABC bằng với tam giác MNK?
A. BC = MK B. BC = HK C. AC = MK D. AC = HK
Lời giải:
Để tam giác ABC bằng tam giác MNK theo trường hợp cạnh – góc – cạnh thì ta cần thêm điều kiện là AC = MK
Chọn đáp án C.
Bài 2: Cho tam giác BAC và tam giác KEF có BA = EK, ∠A = ∠K, CA = KF. Phát biểu nào sau đây đúng?
A. ΔBAC = ΔEKF
B. ΔBAC = ΔEFK
C. ΔABC = ΔFKE
D. ΔBAC = ΔKEF
Lời giải:
Xét hai tam giác BAC và tam giác KEF có: BA = EK, ∠A = ∠K, CA = KF
Suy ra ΔBAC = ΔEKF (c-g-c)
Chọn đáp án A.
Bài 3: Cho hai đoạn thẳng BD và EC vuông góc với nhau tại A sao cho AB = AE, AD = AC, AB < AC. Phát biểu nào sau đây sai?
A. ΔAED = ΔABC
B. BC = ED
C. EB = CD
D. ∠ABC = ∠AED
Lời giải:
Xét hai tam giác ABC và AED có: AB = AE; ∠BAC = ∠DAE; AD = AC
Suy ra: ΔAED = ΔABC (c-g-c) nên A đúng
Suy ra BC = ED (cạnh tương ứng) nên B đúng; ∠ABC = ∠AED (hai góc tương ứng) nên D đúng
Vậy đáp án C sai.
Chọn đáp án C.
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D)
(Áp dụng câu 4 – câu 5)
Bài 4: Chọn câu đúng
A. ΔOAD = ΔOCB
B. ΔODA = ΔOBC
C. ΔAOD = ΔBCO
D. ΔOAD = ΔOBC
Lời giải:
Xét tam giác OAD và tam giác OBC có:
OA = OB; góc O chung; OC = OD
Suy ra: ΔOAD = ΔOBC (c-g-c)
Chọn đáp án D.
Bài 5: So sánh hai góc ∠CAD và ∠CBD
Lời giải:
Bài 6: Cho góc nhọn xOy. Lấy điểm H nằm trong góc xOy. Từ H kẻ HE ⊥ Ox tại E, HF ⊥ Oy tại F. Trên tia HE lấy điểm sao cho E là trung điểm của HM, trên tia HF lấy điểm N sao cho F là trung điểm của HN. Khi đó:
Lời giải:
Chọn đáp án C
Bài 7: Cho tam giác ABC có = . Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM = CN. So sánh CM và BN.
A. BN = CM
B. BN < CM
C. BN > CM
D. BN = 2CM
Lời giải:
Chọn đáp án A
Bài 8: Cho tam giác ABC. Qua A kẻ đường thẳng d // BC, trên d lấy điểm E sao cho AE = BC (E nằm khác phía với B so với AC). Chọn câu sai
A. ΔABC = ΔCEA
B. AB = EC
C.
D. AB // EC
Lời giải:
Chọn đáp án C
Bài 9: Cho tam giác ABC vuông tại A. Trên tia đối của tia CA, lấy điểm D sao cho cho CA = CD. Trên tia đối của tia CB, lấy điểm E sao cho CB = CE. Số đo góc là:
A. 80°
B. 90°
C. 100°
D. 110°
Lời giải:
Chọn đáp án B
Bài 10: Cho tam giác DEF và tam giác MNP có DE = MN, = , EF = NP. Biết = 80°, số đo góc là:
A. 60°
B. 70°
C. 80°
D. 90°
Lời giải:
Chọn đáp án C
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 có đáp án chi tiết hay khác:
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc (g.c.g)
- Bài tập Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc (g.c.g)
- Lý thuyết Tam giác cân
- Bài tập Tam giác cân
- Lý thuyết Định lí Pi-ta-go
- Bài tập Định lí Pi-ta-go
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều