Chứng minh đẳng thức diện tích hình thang, hình bình hành, hình thoi
Với Chứng minh đẳng thức diện tích hình thang, hình bình hành, hình thoi môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 2: Đa giác - Diện tích đa giác để đạt điểm cao trong các bài thi môn Toán 8.
Chứng minh đẳng thức diện tích hình thang, hình bình hành, hình thoi
Dạng bài: Chứng minh đẳng thức diện tích
A. Phương pháp giải
+) Sử dụng các công thức diện tích
+) Vận dụng tính chất diện tích của đa giác.
B. Ví dụ minh họa
Câu 1: Cho hình thang ABCD (AB // CD, AB < CD). Gọi E và F tương ứng là trung điểm của AD và BC; gọi K và I tương ứng là hình chiếu vuông góc của E và F trên đường thẳng CD; gọi G và H tương ứng là hình chiếu vuông góc của E và F trên đường thẳng AB. Chứng minh SABCD = SGHIK = KI. GK = EF. GK =1/2 (AB + CD). GK.
Giải.
Xét ΔEGA vuông tại G và ΔEKD vuông tại K, có:
AE = DE (E là trung điểm AD)
⇒ ΔEGA = ΔEKD (cạnh huyền – góc nhọn)
Chứng minh tương tự, ta cũng có ΔFHB = ΔFIC.
Như vậy:
SABCD = SDEK + SCFI + SABFIKE = SGAE + SFHB + SABFIKE = SGHIK = KI. GK = EF. GK (vì GHIK là hình chữ nhật do có 4 góc vuông). (1)
Lại có: EF là đường trung bình của hình thang ABCD nên EF = 1/2(AB + CD). (2)
Từ (1) và (2) ⇒ SABCD = SGHIK = KI. GK = EF. GK = 1/2(AB + CD). GK.
Câu 2: Cho điểm O bất kì nằm trong hình bình hành ABCD. Chứng minh .
Giải.
Từ O kẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.
Ta có OH1 ⊥ AB
Mà AB // CD
Nên OH2 ⊥ CD. Do đó:
Câu 3: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Vẽ . Chứng minh ?
Giải.
KẻAH⊥BC tại H và AH cắt MN tại K.
+ Xét tam giác ABC có MN là đường trung bình nên MN//BC suy ra AH⊥MN tại K.
Xét tứ giác CBPQ có PQ//BC (do MN//BC) và PB//CQ (do cùng vuông góc với PQ) nên CBPQ là hình bình hành. Lại có nên tứ giác CBPQ là hình chữ nhật.
Suy ra SCBPQ=BP.BC
+ Xét ΔBPM và ΔAKM có:
Suy ra ΔBPM=ΔAKM (cạnh huyền – góc nhọn)
⇒BP=AK (hai cạnh tương ứng) (1)
Xét ΔABK có MK//BH (do MN//BC) và M là trung điểm của AB nên K là trung điểm của AH (định lý về đường trung bình của tam giác). Nên AK=1/2 AH (2).
Từ (1) và (2) ta có PB=1/2 AH
C. Bài tập tự luyện
Câu 1: Cho hình bình hành ABCD. Lấy M thuộc AB, N thuộc cạnh CD. Gọi P là giao điểm của AN và DM, Q là giao điểm của BN và CM.
Câu 2: Cho hình thang ABCD (BC là đáy nhỏ). Gọi I là trung điểm của CD. Qua I kẻ đường thẳng d song song với AB. Kẻ AH và BE vuông góc với d. Chứng minh
Câu 3: Trên đường chéo AC của hình vuông ABCD, lấy điểm E (E khác A và C). Qua E kẻ đường thẳng song song với các cạnh và cắt AB, BC, CD, DA lần lượt tại M, N, P, Q. So sánh diện tích MNPQ và diện tích ABCD.
Câu 4: Cho tam giác ABC vuông tại A. Về phía ngoài tam giác, vẽ các hình vuông ABDE, ACFG, BCHI. Chứng minh
Câu 5: Cho hình bình hành ABCD. Gọi K, O, E, N là trung điểm của AB, BC, CD, DA. Các đoạn thẳng AO, BE, CN và DK cắt nhau tại L, M, R, P. Chứng minh
Câu 6: Cho hình bình hành ABCD. Gọi K và L là hai điểm thuộc cạnh BC sao cho BK = KL = LC. Tính tỉ số diện tích của:
a) Các tam giác DAC và DCK.
b) Tam giác DAC và tứ giác ADLB.
c) Các tứ giác ABKD và ABLD.
Câu 7: Cho hình thoi MNPQ. Biết A, B, C, D lần lượt là các trung điểm của các cạnh NM, NP, PQ, QM. Tính tỉ số diện tích của tứ giác ABCD và hình thoi MNPQ?
Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của diện tích một hình
- Công thức, cách tính diện tích hình thang, hình bình hành, hình thoi
- Vận dụng công thức tính diện tích để tính toán và chứng minh đẳng thức
- Cách tính diện tích đa giác (hay, chi tiết)
- Dạng bài tập chứng minh bất đẳng thức diện tích
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều