Lý thuyết Căn bậc hai lớp 9 (hay, chi tiết)
Bài viết Lý thuyết Căn bậc hai lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Căn bậc hai.
Lý thuyết Căn bậc hai lớp 9 (hay, chi tiết)
Lời giải bài tập Toán 9 Bài 1 sách mới:
(Kết nối tri thức) Giải sgk Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn
(Chân trời sáng tạo) Giải sgk Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn
(Chân trời sáng tạo) Giải sgk Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn
(Chân trời sáng tạo) Giải sgk Toán 9 Bài 1: Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0)
(Chân trời sáng tạo) Giải sgk Toán 9 Bài 1: Bảng tần số và biểu đồ tần số
(Chân trời sáng tạo) Giải sgk Toán 9 Bài 1: Không gian mẫu và biến cố
(Cánh diều) Giải sgk Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn
(Cánh diều) Giải sgk Toán 9 Bài 1: Căn bậc hai và căn bậc ba của số thực
(Cánh diều) Giải sgk Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn
(Cánh diều) Giải sgk Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn
(Cánh diều) Giải sgk Toán 9 Bài 1: Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
(Cánh diều) Giải sgk Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
(Cánh diều) Giải sgk Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn
A. Lý thuyết
I. CĂN BẬC HAI
1. Khái niệm
Căn bậc hai của một số a không âm là số x sao cho x2 = a
2. Tính chất
- Số âm không có căn bậc hai
- Số 0 có đúng một căn bậc hai đó chính là số 0, ta viết √0 = 0
- Số dương a có đúng hai căn bậc hai là hai số đối nhau; số dương ký hiệu là √a, số âm ký hiệu là -√a
3. Ví dụ cụ thể
- Số 25 có hai căn bậc hai là 5 và -5.
- Số 7 có hai căn bậc hai là √7 và -√7
- Số -1 không có căn bậc hai.
II. CĂN BẬC HAI SỐ HỌC
1. Định nghĩa
- Với số dương a, số √a được gọi là căn bậc hai số học của a.
- Số 0 cũng được gọi là căn bậc hai số học của 0.
- Ta viết x = √a
- Ví dụ:
Căn bậc hai số học của 4 là √4 (= 2).
Căn bậc hai số học của 5 là √5 (≈ = 2,236067977...)
Ví dụ 1: Tìm căn bậc hai số học của các số sau đây: 121; 144; 361; 400
Giải:
2. Phép khai phương
- Phép khai phương là phép toán tìm căn bậc hai số học của số không âm (gọi tắt là khai phương).
- Khi biết một căn bậc hai số học của một số, ta dễ dàng xác định được các căn bậc hai của nó.
- Ví dụ:
Căn bậc hai số học của 49 là 7 nên 49 có hai căn bậc hai là 7 và -7.
Căn bậc hai số học cuả 100 là 10 nên 100 có hai căn bậc hai là 10 và -10
Căn bậc hai số học của 144 là 12 nên 144 có hai căn bậc hai là 12 và -12
3. Một số kết quả cần nhớ
- Với a ≥ 0 thì a = (√a)2.
- Với a ≥ 0, nếu x ≥ 0 và x2 = a thì x = √a.
- Với a ≥ 0 và x2 = a thì x = ±√a.
III. SO SÁNH CÁC CĂN BẬC HAI SỐ HỌC.
1. Định lý
Với hai số a và b không âm, ta có: a > b ⇔ √a > √b
2. Ví dụ cụ thể: So sánh
- 1 với √2.
Lời giải:
Ta có 1 < 2 ⇒ √1 < √2 ⇒ 1 < √2.
- 3 với √7.
Lời giải:
Ta có 9 > 7 ⇒ √9 > √7 ⇒ 3 > √7.
Ví dụ 1: So sánh:
a) 2 và √3 b) 7 và √51
Lời giải:
a) Ta có: 2 = √4 mà 4 > 3 nên √4 > √3 tức 2 > √3
b) Ta có: 7 = √49 mà 49 < 51 nên √49 < √51 tức 7 < √51
B. Bài tập tự luận
Câu 1: Tìm căn bậc hai của các số sau: 9; 9/25; 1,21; -144.
Lời giải:
- Vì 9 > 0 nên 9 có hai căn bậc hai là 3 và -3, vì 32 = 9 và (-3)2 = 9.
- Vì 9/25 > 0 nên 9/25 có hai căn bậc hai là 3/5 và -3/5, vì (3/5)2 = 9/25 và (-3/5)2 = 9/25.
- Vì 1,21 > 0 nên 1,21 có hai căn bậc hai là 1,1 và -1,1, vì 1,12 = 1,21 và (-1,1)2 = 1,21.
- Theo tính chất, số âm không tồn tại căn bậc hai nên -144 không có căn bậc hai.
Câu 2: Giải các phương trình sau:
a) x2 = 5. b) x2 + 2 = 0 c) (x - 2)2 = 7
Lời giải:
- Giải phương trình x2 = 5. Do 5 > 0 nên 5 có hai căn bậc hai là √5 và -√5
Suy ra . Vậy S = {√5; -√5}
- Giải phương trình x2 = -2. Vì -2 < 0 nên -2 không có căn bậc hai. Suy ra phương trình vô nghiệm. Vậy S = ∅
- Giải phương trình (x - 2)2 = 7. Do 7 > 0 nên 7 có hai căn bậc hai là √7 và -√7.
Suy ra
Vậy S = {2 - √7; 2 + √7}
Trình bày gọn:
Câu 3: So sánh các số sau:
a) 6 và √35 b) 3 và √5 c) √7 với √5.
Lời giải:
a) Ta có: 36 > 35 ⇒ √36 > √35 ⇒ 6 > √35
b) Ta có: 9 > 5 ⇒ √9 > √5 ⇒ 3 > √5
c) Ta có: 7 > 5 ⇒ √7 > √5
Bài giảng: Bài 1: Căn bậc hai - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 2: Căn thức bậc hai và hằng đẳng thức (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Căn thức bậc hai và hằng đẳng thức
- Lý thuyết Bài 3: Liên hệ giữa phép nhân và phép khai phương (hay, chi tiết)
- Trắc nghiệm Bài 3 (có đáp án): Liên hệ giữa phép nhân và phép khai phương
- Lý thuyết Bài 4: Liên hệ giữa phép chia và phép khai phương (hay, chi tiết)
- Trắc nghiệm Bài 4 (có đáp án): Liên hệ giữa phép chia và phép khai phương
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều