Lý thuyết Căn bậc hai lớp 9 (hay, chi tiết)

Bài viết Lý thuyết Căn bậc hai lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Căn bậc hai.

Lý thuyết Căn bậc hai lớp 9 (hay, chi tiết)

Quảng cáo

Lời giải bài tập Toán 9 Bài 1 sách mới:

A. Lý thuyết

I. CĂN BẬC HAI

1. Khái niệm

Căn bậc hai của một số a không âm là số x sao cho x2 = a

2. Tính chất

- Số âm không có căn bậc hai

- Số 0 có đúng một căn bậc hai đó chính là số 0, ta viết √0 = 0

- Số dương a có đúng hai căn bậc hai là hai số đối nhau; số dương ký hiệu là √a, số âm ký hiệu là -√a

3. Ví dụ cụ thể

- Số 25 có hai căn bậc hai là 5 và -5.

- Số 7 có hai căn bậc hai là √7 và -√7

- Số -1 không có căn bậc hai.

II. CĂN BẬC HAI SỐ HỌC

1. Định nghĩa

- Với số dương a, số √a được gọi là căn bậc hai số học của a.

- Số 0 cũng được gọi là căn bậc hai số học của 0.

- Ta viết x = √a Lý thuyết Căn bậc hai - Lý thuyết Toán lớp 9 đầy đủ nhất

- Ví dụ:

Căn bậc hai số học của 4 là √4 (= 2).

Căn bậc hai số học của 5 là √5 (≈ = 2,236067977...)

Ví dụ 1: Tìm căn bậc hai số học của các số sau đây: 121; 144; 361; 400

Giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Quảng cáo

2. Phép khai phương

- Phép khai phương là phép toán tìm căn bậc hai số học của số không âm (gọi tắt là khai phương).

- Khi biết một căn bậc hai số học của một số, ta dễ dàng xác định được các căn bậc hai của nó.

- Ví dụ:

Căn bậc hai số học của 49 là 7 nên 49 có hai căn bậc hai là 7 và -7.

Căn bậc hai số học cuả 100 là 10 nên 100 có hai căn bậc hai là 10 và -10

Căn bậc hai số học của 144 là 12 nên 144 có hai căn bậc hai là 12 và -12

3. Một số kết quả cần nhớ

- Với a ≥ 0 thì a = (√a)2.

- Với a ≥ 0, nếu x ≥ 0 và x2 = a thì x = √a.

- Với a ≥ 0 và x2 = a thì x = ±√a.

III. SO SÁNH CÁC CĂN BẬC HAI SỐ HỌC.

1. Định lý

Quảng cáo

Với hai số a và b không âm, ta có: a > b ⇔ √a > √b

2. Ví dụ cụ thể: So sánh

- 1 với √2.

Lời giải:

Ta có 1 < 2 ⇒ √1 < √2 ⇒ 1 < √2.

- 3 với √7.

Lời giải:

Ta có 9 > 7 ⇒ √9 > √7 ⇒ 3 > √7.

Ví dụ 1: So sánh:

a) 2 và √3              b) 7 và √51

Lời giải:

a) Ta có: 2 = √4 mà 4 > 3 nên √4 > √3 tức 2 > √3

b) Ta có: 7 = √49 mà 49 < 51 nên √49 < √51 tức 7 < √51

B. Bài tập tự luận

Câu 1: Tìm căn bậc hai của các số sau: 9; 9/25; 1,21; -144.

Quảng cáo

Lời giải:

- Vì 9 > 0 nên 9 có hai căn bậc hai là 3 và -3, vì 32 = 9 và (-3)2 = 9.

- Vì 9/25 > 0 nên 9/25 có hai căn bậc hai là 3/5 và -3/5, vì (3/5)2 = 9/25 và (-3/5)2 = 9/25.

- Vì 1,21 > 0 nên 1,21 có hai căn bậc hai là 1,1 và -1,1, vì 1,12 = 1,21 và (-1,1)2 = 1,21.

- Theo tính chất, số âm không tồn tại căn bậc hai nên -144 không có căn bậc hai.

Câu 2: Giải các phương trình sau:

a) x2 = 5.     b) x2 + 2 = 0     c) (x - 2)2 = 7

Lời giải:

- Giải phương trình x2 = 5. Do 5 > 0 nên 5 có hai căn bậc hai là √5 và -√5

     Suy ra Bài tập Căn bậc hai - Bài tập Toán lớp 9 chọn lọc có đáp án, lời giải chi tiết. Vậy S = {√5; -√5}

- Giải phương trình x2 = -2. Vì -2 < 0 nên -2 không có căn bậc hai. Suy ra phương trình vô nghiệm. Vậy S = ∅

- Giải phương trình (x - 2)2 = 7. Do 7 > 0 nên 7 có hai căn bậc hai là √7 và -√7.

Suy ra

Bài tập Căn bậc hai - Bài tập Toán lớp 9 chọn lọc có đáp án, lời giải chi tiết

Vậy S = {2 - √7; 2 + √7}

Trình bày gọn:

Bài tập Căn bậc hai - Bài tập Toán lớp 9 chọn lọc có đáp án, lời giải chi tiết

Câu 3: So sánh các số sau:

a) 6 và √35     b) 3 và √5     c) √7 với √5.

Lời giải:

a) Ta có: 36 > 35 ⇒ √36 > √35 ⇒ 6 > √35

b) Ta có: 9 > 5 ⇒ √9 > √5 ⇒ 3 > √5

c) Ta có: 7 > 5 ⇒ √7 > √5

Bài giảng: Bài 1: Căn bậc hai - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên