Lý thuyết Đồ thị của hàm số y = ax + b hay, chi tiết

Lý thuyết Đồ thị của hàm số y = ax + b hay, chi tiết

Bài giảng: Bài 3: Đồ thị của hàm số y = ax + b - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

I. ĐỒ THỊ HÀM SỐ y = ax + b (a ≠ 0)

Quảng cáo

Đồ thị hàm số y = ax + b (a ≠ 0) là một đường thẳng:

    + Cắt trục tung tại điểm có tung độ bằng b.

    + Song song với đường thẳng y = ax nếu b ≠ 0, và trùng với đường thẳng y = ax nếu b = 0

Đồ thị này cũng được gọi là đường thẳng y = ax + b và b được gọi là tung độ gốc của đường thẳng.

Chú ý: Đồ thị hàm số y = ax + b (a ≠ 0) cắt trục hoành tại điểm Q(-b/a; 0).

Ví dụ 1:

Lý thuyết Đồ thị của hàm số y = ax + b - Lý thuyết Toán lớp 9 đầy đủ nhất

Đồ thị hàm số y = 2x đi qua 2 điểm A(1; 2); O(0; 0).

Đồ thị hàm số y = 2x + 3 đi qua 2 điểm C(-1; 1); B(0; 3).

Nhận thấy đồ thị hàm số y = 2x song song với đồ thị hàm số y = 2x + 3.

Ví dụ 2: Gọi A là giao điểm của hai đường thẳng y = x + 1 và y = 2x + 1, tìm tọa độ của điểm A?

Giải:

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:

x + 1 = 2x + 1 ⇒ x - 2x = 1 - 1

⇒ -x = 0 ⇒ x = 0

Với x = 0 thì y = 0 + 1 = 1

Suy ra, tọa độ điểm A(0; 1)

II. CÁCH VẼ ĐỒ THỊ HÀM SỐ y = ax + b (a ≠ 0)

Quảng cáo

    + Bước 1: Cho x = 0 thì y = b, ta được điểm P(0; b) thuộc trục tung Oy.

         Cho y = 0 thì x = -b/a ta được điểm Q(-b/a; 0) thuộc trục hoành Ox

    + Bước 2: Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị hàm số y = ax + b (a ≠ 0).

    + Chú ý: Vì đồ thị y = ax + b (a ≠ 0) là một đường thẳng nên muốn vẽ nó chỉ cần xác định hai điểm phân biệt thuộc đồ thị.

Do đó trong trường hợp giá trị (-b/a; 0) khó xác định trên trục Ox thì ta có thể thay thế điểm Q bằng cách chọn một giá trị x1 sao cho Q(x1; y1) trong đó y1 = ax1 + b dễ xác định hơn trên mặt phẳng tọa độ.

Ví dụ: Vẽ đồ thị hàm số y = 3x - 1

    + Bước 1: Cho x = 0 thì y = -1, ta được điểm P(0; -1) ∈ Oy.

         Cho y = 2 thì x = 1 ta được điểm Q(1; 2)

    + Bước 2: Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị hàm số y = 3x - 1

Lý thuyết Đồ thị của hàm số y = ax + b - Lý thuyết Toán lớp 9 đầy đủ nhất

Quảng cáo

B. Bài tập tự luận

Câu 1: Cho đường thẳng d xác định bởi y = 2x + 11 . Đường thẳng d' đối xứng với đường thẳng d qua trục hoành. Vậy phương trình đường thẳng d' là?

Điểm đối xứng với điểm (x, y) qua trục hoành là điểm (x; -y)

Xét đường thẳng y = 2x + 11 , thay y bởi -y ta được: -y = 2x + 11 hay y = -2x - 11

Vậy đường thẳng (d'): y = -2x - 11

Câu 2: Cho đường thẳng d có phương trình y = mx + m - 1 (m là tham số). Chứng minh rằng đường thẳng đã cho luôn đi qua một điểm cố định với mọi giá trị của m

Giả sử d đi qua M(x0; y0) với mọi m.

Khi đó ta có: y0 = mx0 + m - 1 với mọi m, tức (x0 + 1)m - (y0 + 1) = 0 với mọi m

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy đường thẳng d luôn đi qua điểm M(-1; -1)

Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Nhóm học tập 2k7