Bài tập Dấu hiệu nhận biết tiếp tuyến của đường tròn. chọn lọc, có đáp án
Bài tập Dấu hiệu nhận biết tiếp tuyến của đường tròn. chọn lọc, có đáp án
Câu 1: Cho (O; R).Đường thẳng d là tiếp tuyến của đường tròn (O; R) tại tiếp điểm A khi
A. d ⊥ OA tại A và A ∈ (O)
B. d ⊥ OA
C. A ∈ (O)
D. d // OA
Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn
Chọn đáp án A
Câu 2: Cho (O; 5cm). Đường thẳng d là tiếp tuyến của đường tròn (O; 5cm), khi đó
A. Khoảng cách từ O đến đường thẳng d nhỏ hơn 5cm
B. Khoảng cách từ O đến đường thẳng d lớn hơn 5cm
C. Khoảng cách từ O đến đường thẳng d bằng 5cm
D. Khoảng cách từ đến O đường thẳng d bằng 6cm
Khoảng cách từ tâm của một đường tròn đến tiếp tuyến bằng bán kính của đường tròn đó
Chọn đáp án C
Câu 3: Cho tam giác ABC có AC = 3cm, AB = 4cm, BC = 5cm. Vẽ đường tròn (C; CA). Khẳng định nào sau đây là đúng?
A.Đường thẳng BC cắt đường tròn (C; CA) tại một điểm
B.AB là cát tuyến của đường tròn (C; CA)
C.AB là tiếp tuyến của (C; CA)
D. BC là tiếp tuyến của (C; CA)
+ Xét tam giác có:
BC2 = 52 = 25; AB2 + AC2 = 42 + 32 = 25 ⇒ BC2 = AB2 + AC2
⇒ ΔABC vuông tại A (Định lý Pytago đảo)
⇒ AB ⊥ AC mà A ∈ (C; CA) nên AB là tiếp tuyến của (C; CA)
Chọn đáp án C
Câu 4: Cho tam giác cân ABC tại A; đường cao AH và BK cắt nhau tại I. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính AI
A. HK
B. IB
C. IC
D. Ac
Gọi O là trung điểm AI. Xét tam giác vuông AIK có
Từ (*) và (**) thì HK là tiếp tuyến của đường tròn đường kính AI
Chọn đáp án A
Câu 5: Cho tam giác vuông ABC tại A, đường cao AH. Đường tròn đường kính BH cắt AB tại D, đường tròn đường kính CH cắt AC tại E. Chọn khẳng định sai trong các khẳng định sau
A. DE là cát tuyến của đường tròn đường kính BH
B. DE là tiếp tuyến của đường tròn đường kính BH
C. Tứ giác AEHD là hình chữ nhật
D. DE ⊥ DI (với I là trung điểm BH)
Gọi I, J lần lượt là trung điểm của BH và CH.
Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay
Vì D, E lần lượt thuộc đường tròn đường kính BH và HC
Nên DE là tiếp tuyến của đường tròn đường kính BH
Từ chứng minh trên suy ra các phương án B, C, D đúng
Chọn đáp án A
Câu 6: Trên tiếp tuyến tại điểm A của đường tròn (O; R) lấy điểm M sao cho OM = 2R. Gọi điểm B của đường tròn (O; R) sao cho MB = MA. Tìm khẳng định sai?
A. MB là tiếp tuyến của đường tròn (O; R).
B. Tam giác ABC là tam giác đều.
C. Diện tích tam giác AOM là:
D. MA = R√2
Chọn đáp án D.
Câu 7: Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Tìm khẳng định đúng
A. AC là tiếp tuyến của (B; BA).
B. AB là tiếp tuyến của (A; AC).
C. BC là tiếp tuyến của (A; AC).
D. BC là tiếp tuyến của (A; AB).
Tam giác ABC có: AB2 + AC2 = BC2 nên tam giác BAC vuông tại A.
Ta có: AB ⊥ AC tại A và A thuộc đường tròn (B; BA).
Suy ra: AC là tiếp tuyến của (B; BA).
Chọn đáp án A.
Câu 8: Cho (O; 5cm) có dây AB = 8cm . Qua O , kẻ đường vuông góc với AB cắt tiếp tuyến tại A của đường tròn tại C.
A. BC là tiếp tuyến của (O).
B. Khoảng cách từ O đến AB là 3 cm.
C. OC = 25/3 cm
D. A hoặc B sai
Gọi H là giao điểm của AB và CO.
Xét tam giác OAB có OA = OB = R nên tam giác OAB cân tại O.
Lại có, OH là đường cao nên đồng thời là đường phân giác
* Áp dụng hệ thức về cạnh và góc trong tam giác vuông ta có:
Chọn đáp án D.
Câu 9: Cho hình vuông ABCD. Gọi O là tâm đường tròn đi qua 4 điểm A,B, C, D. Tìm khẳng định đúng?
A. AB là tiếp tuyến của (O).
B. BC là tiếp tuyến của (O).
C.CD là tiếp tuyến của (O)
D. Tất cả sai
* Gọi O là giao điểm của hai đường chéo AC và BD
Theo tính chất hình chữ nhật ta có:
Nên O là tâm đường tròn đi qua 4 điểm A,B, C, D.
Các đường thẳng AB; BC; CD; DA đều có 2 điểm chung với (O) nên 4 đường thẳng này không thể là tiếp tuyến của đường tròn (O)
Chọn đáp án D.
Câu 10: Cho hình vuông ABCD cạnh a, gọi O là tâm đường tròn nội tiếp hình vuông. Tìm khẳng định đúng?
A. AB, BC, CD và DA là các tiếp tuyến của đường tròn (O).
B. AB, BC, CD và DA đều không là tiếp tuyến của đường tròn (O).
C. AC và BD là tiếp tuyến của (O).
D. Tất cả sai.
Gọi O là giao điểm của AC và BD. Khi đó, đường tròn tâm O bán kính R = a/2 là đường tròn nội tiếp hình vuông ABCD.
Do O là tâm đường tròn nội tiếp hình vuông ABCD nên đường tròn tiếp xúc với các cạnh của hình vuông.
Suy ra: AB; BC; CD và DA là các tiếp tuyến của đường tròn (O).
Chọn đáp án A.
Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
- Lý thuyết Bài 6: Tính chất của hai tiếp tuyến cắt nhau (hay, chi tiết)
- Trắc nghiệm Bài 6 (có đáp án): Tính chất của hai tiếp tuyến cắt nhau
- Lý thuyết Bài 7: Vị trí tương đối của hai đường tròn (hay, chi tiết)
- Trắc nghiệm Bài 7 (có đáp án): Vị trí tương đối của hai đường tròn
- Tổng hợp lý thuyết Chương 2 Hình học 9 ngắn gọn, dễ hiểu (hay, chi tiết)
- Tổng hợp Trắc nghiệm Chương 2 Hình học 9 (có đáp án)
Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 9
- Soạn Văn 9 (bản ngắn nhất)
- Văn mẫu lớp 9
- Đề kiểm tra Ngữ Văn 9 (có đáp án)
- Giải bài tập Toán 9
- Giải sách bài tập Toán 9
- Đề kiểm tra Toán 9
- Đề thi vào 10 môn Toán
- Chuyên đề Toán 9
- Giải bài tập Vật lý 9
- Giải sách bài tập Vật Lí 9
- Giải bài tập Hóa học 9
- Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
- Giải bài tập Sinh học 9
- Giải Vở bài tập Sinh học 9
- Chuyên đề Sinh học 9
- Giải bài tập Địa Lí 9
- Giải bài tập Địa Lí 9 (ngắn nhất)
- Giải sách bài tập Địa Lí 9
- Giải Tập bản đồ và bài tập thực hành Địa Lí 9
- Giải bài tập Tiếng anh 9
- Giải sách bài tập Tiếng Anh 9
- Giải bài tập Tiếng anh 9 thí điểm
- Giải sách bài tập Tiếng Anh 9 mới
- Giải bài tập Lịch sử 9
- Giải bài tập Lịch sử 9 (ngắn nhất)
- Giải tập bản đồ Lịch sử 9
- Giải Vở bài tập Lịch sử 9
- Giải bài tập GDCD 9
- Giải bài tập GDCD 9 (ngắn nhất)
- Giải sách bài tập GDCD 9
- Giải bài tập Tin học 9
- Giải bài tập Công nghệ 9
Nhóm hỏi bài 2k6