Các bài tập về hàm số bậc nhất và cách giải bài tập lớp 9 (hay, chi tiết)



Bài viết Các bài tập về hàm số bậc nhất và cách giải bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán lớp 9.

Các bài tập về hàm số bậc nhất và cách giải bài tập

I. Lý thuyết

1. Khái niệm hàm số bậc nhất

Hàm số bậc nhất có dạng y = ax + b, trong đó a, b là hai số đã cho và a0.

2. Các tính chất của hàm số bậc nhất

- Hàm số bậc nhất xác định bởi mọi x.

- Hàm số bậc nhất đồng biến trên  khi a > 0.

- Hàm số bậc nhất nghịch biến trên  khi a < 0.

II. Các dạng bài tập và phương pháp giải

Dạng 1: Nhận dạng hàm số bậc nhất

Phương pháp giải: Dựa vào định nghĩa của hàm số bậc nhất

Hàm số bậc nhất có dạng y = ax + b (a0).

Hàm số nào không có dạng trên thì không phải hàm số bậc nhất.

Ví dụ 1: Trong các hàm số sau đây đâu là hàm số bậc nhất, chỉ rõ các hệ số a, b trong trường hợp hàm số bậc nhất.

a) y = 3x + 1

b) y=x+12

c) y=2x324x2

d) y=5x+1x3

Lời giải:

a) Hàm số y = 3x + 1 là hàm số bậc nhất vì nó có dạng y = ax + b với a = 3 và b = 1.

b) Hàm số y=x+12=x2+2x+1 không là hàm số bậc nhất vì nó không có dạng y = ax + b.

c) Hàm số y=2x324x24x212x+94x2 = -12x + 9 là hàm số bậc nhất vì nó có dạng y = ax + b với a = -12 và b = 9.

d) Hàm số y=5x+1x3 không phải hàm số bậc nhất vì nó không có dạng y = ax + b.

Ví dụ 2: Tìm điều kiện của m để hàm số sau là hàm số bậc nhất.

a) y=m21x+3

b) y=m2.x5

c) y = (m + 1)x2 + x -20

Lời giải:

a) Để làm số y=m21x+3 là hàm số bậc nhất thì a0

m210

m1m+10

m10m+10

m1m1

Vậy để hàm số đã cho là hàm số bậc nhất thì m±1.

b) Để hàm số y=m2.x5 là hàm số bậc nhất thì a0

m20m20

m2>0

m>2

Vậy để hàm số đã cho là hàm số bậc nhất thì m>2.

c) Để hàm số  y = (m + 1)x2 + x - 20 là hàm số bậc nhất thì

m + 1 = 0

m = -1

Vậy m = – 1 thì hàm số đã cho là hàm số bậc nhất.

Dạng 2: Tính giá trị hàm số.

Phương pháp giải: Giá trị hàm số y = f(x) tại điểm x0 là y0=fx0

Do đó muốn tính giá trị của hàm số y = f(x) tại x = x0 ta thay x = x0 vào công thức của hàm số rồi tính giá trị f(x0).

Ví dụ: Tính giá trị hàm số

a) y = f(x) = 3x + 5 tại x = 1

b) y = f(x) = -4x + 1 tại x = 2

c) y = f(x) = 2x + 6 tại x = 0

Lời giải:

a) y =  f(x) = 3x + 5

Thay x = 1 vào hàm số đã cho ta được:

y = f(1) = 3.1 +5 = 8

Vậy tại x = 1 thì giá trị của hàm số là 8

b) y = f(x) = -4x + 1

Thay x = 2 vào hàm số đã cho ta được:

y = f(2) = -4.2 + 1 = -8 + 1 = -7

Vậy tại x = 2 thì giá trị của hàm số là -7

c) y = f(x) = 2x + 6

Thay x = 0 vào hàm số đã cho ta được:

y = f(0) = 2.0 + 6 =6

Vậy tại x = 0 thì giá trị của hàm số là 6

Dạng 3: Xét tính đồng biến nghịch biến của hàm số bậc nhất.

Phương pháp giải: Xét hàm số y = ax + b với a, b là hằng số, a0

- Nếu a > 0 thì hàm số đồng biến trên .

- Nếu a < 0 thì hàm số nghịch biến trên .

Ví dụ 1: Xét tính đồng biến nghịch biến của các hàm số sau

a) y = 3x + 12

b) y = -2x + 1

c) y = 12x + 5

Lời giải:

a) Với y = 3x + 12 ta có a = 3 > 0

Hàm số đã cho đồng biến trên .

b) Với y = -2x + 1 ta có a = -2 < 0

Hàm số đã cho nghịch biến trên .

c) Với y = 12x + 5 ta có a = 12> 0.

Hàm số đã cho đồng biến trên .

Ví dụ 2: Tìm m để các hàm số sau

a) y = (m – 1) x +3 đồng biến trên .

b) y = (m25m+6)x  + 3m nghịch biến trên .

Lời giải:

a) Để hàm số y = (m – 1) x +3 đồng biến trên  thì a > 0

m – 1 > 0

m > 1

Vậy để hàm số đồng biến trên  thì m > 1.

b) Để hàm số y = (m25m+6)x  + 3m nghịch biến trên thì a < 0

 m25m+6< 0

mm23m2<0

m2m3<0

TH1: m2>0m3<0

m>2m<32<m<3

TH2: m2<0m3>0

m<2m>3 (vô lí)

Vậy 2 < m < 3 thì hàm số nghịch biến trên .

III. Bài tập tự luyện

Bài 1: Các hàm số sau đây có phải hàm số bậc nhất hay không? Nếu phải hãy chỉ ra hệ số a, b.

a) y = 3x + 5

b) y = xx1x2

c) y = x22x12+3x

d) y=x2+2x53x23

Bài 2: Tìm m để hàm số sau là hàm số bậc nhất

a) y = (m+4)x – 3

b) y=m27m+8x2+3x2

c) y=m+13x+34

d) y=m+1m3x+12.

Bài 3: Tính giá trj hàm số

a) y = 3x tại x = 12

b) y = 12x + 12 tại x = 5

c) y = 53x - 45 tại x = 3

d) y=(m+1)x+3 tại x = 2.

Bài 4: Tìm m để các giá trị hàm số sau thỏa mãn

a) Giá trị hàm số y = (m+1)x - 5 tại x = 2 là 7

b) Giá trị hàm số y=(m+1)x+3 tại x = 12 là 52

Bài 5: Tìm m để hàm số y=(m2+2m)x32 có f(1) = f(2).

Bài 6: Chứng minh hàm số sau luôn là hàm số bậc nhất

a) y=m2+2m+5x67

b) y=m2+2x43

c) y=m+3+1x+3

Bài 7: Các hàm số sau đồng biến hay nghịch biến

a) y = -2x + 1

b) y = 52x - 3

c) y = 4x + 7.

Bài 8: Tìm m để hàm số sau thỏa mãn

a) y = (m +1) x - 5 luôn đồng biến trên .

b) y=m+31x3 luôn nghịch biến trên .

c) y=m2+3mx3 luôn đồng biến trên .

Bài 9: Chứng minh các hàm số sau:

a) y=k2+2k+3x+k5 luôn là hàm số bậc nhất và luôn đồng biến trên .

b) y=m2+m2x67 luôn là hàm số bậc nhất và luôn nghịch biến trên .

Bài 10: Cho hàm số y=k2+2k+5x+k5. So sánh f(1) và f21.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên