Cách giải và biện luận phương trình bậc hai một ẩn lớp 9 (cực hay)



Bài viết Cách giải và biện luận phương trình bậc hai một ẩn lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải và biện luận phương trình bậc hai một ẩn.

Cách giải và biện luận phương trình bậc hai một ẩn lớp 9 (cực hay)

A. Phương pháp giải

B1: Nếu phương trình chưa ở dạng ax2 + bx + c = 0 thì biến đổi đưa phương trình về đúng dạng này

B2: Nếu hệ số a chứa tham số ta xét 2 trường hợp

- Trường hợp 1: a = 0, ta giải và biện luận phương trình bx + c = 0

- Trường hợp 2: a  ≠ 0, ta lập biểu thức ∆ = b2 – 4ac. Khi đó:

+ Nếu ∆ < 0 thì phương trình vô nghiệm

+ Nếu ∆ = 0 thì phương trình có nghiệm kép:  Cách giải và biện luận phương trình bậc hai một ẩn cực hay

+ Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

B3: Kết luận

Ví dụ 1: Giải và biện luận phương trình: x2 – 3x + m = 0

Giải

Phương trình đã cho là phương trình bậc 2 có hệ số a = 1

Ta có: ∆ = b2 – 4ac = (-3)2 – 4.1.m = 9 – 4m

+ Nếu ∆ < 0 ⇔ 9 - 4m < 0 ⇔ 4m > 9 ⇔ m > 9/4   thì phương trình vô nghiệm

+ Nếu ∆ = 0 ⇔ 9 - 4m = 0 ⇔ 4m = 9 ⇔ m = 9/4  thì phương trình có nghiệm kép:  Cách giải và biện luận phương trình bậc hai một ẩn cực hay

+ Nếu ∆ > 0 ⇔ 9 - 4m > 0 ⇔ 4m < 9 ⇔ m < 9/4 thì phương trình có 2 nghiệm phân biệt:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Kết luận :

- Nếu Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình vô nghiệm

- Nếu Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình có nghiệm kép Cách giải và biện luận phương trình bậc hai một ẩn cực hay

- Nếu Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình có hai nghiệm phân biệt Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Ví dụ 2: Giải và biện luận phương trình  mx2 – x + 2 = 0(1)

Giải

Trường hợp 1: nếu m = 0 thì phương trình (1) trở thành

-x + 2 = 0 ⇔ x = 2

Trường hợp 2: nếu m ≠ 0 thì phương trình (1) là phương trình bậc hai có:

∆ = b2 – 4ac = (-1)2 – 4.2.m = 1 – 8m

+ Nếu ∆ < 0 ⇔ 1 - 8m < 0 ⇔ 8m > 1 ⇔ m > 1/8  thì phương trình vô nghiệm

+ Nếu ∆ = 0 ⇔ 1 - 8m = 0 ⇔ 8m = 1 ⇔ m = 1/8 thì phương trình có nghiệm kép: Cách giải và biện luận phương trình bậc hai một ẩn cực hay

+ Nếu ∆ > 0 ⇔ 1 - 8m > 0 ⇔ 8m < 1 ⇔ m < 1/8 thì phương trình có 2 nghiệm phân biệt:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Kết luận:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Ví dụ 3: Giải và biện luận phương trình mx2 – 2x + m = x2 – 2mx

Giải

Phương trình đã cho ⇔ mx2 - 2x + m - x2 + 2mx = 0

⇔ (m - 1)x2 + 2(m - 1)x + m = 0 (1)

Trường hợp 1: m = 1 thì phương trình (1) trở thành: 1 = 0 (phương trình vô nghiệm)

Trường hợp 2: m ≠ 1 thì phương trình (1) là phương trình bậc hai có

∆ꞌ = (bꞌ)2 – ac = (m-1)2 – (m-1).(m) = m2 – 2m + 1 - m2 + m = 1 - m

+ Nếu ∆ꞌ < 0 ⇔ 1 - m < 0 ⇔ m > 1  thì phương trình vô nghiệm

+ Nếu ∆ꞌ = 0 ⇔ 1 - m = 0 ⇔ m = 1 (loại vì m ≠ 1)

+ Nếu ∆ꞌ  > 0 ⇔ 1 - m > 0 ⇔ m < 1 thì phương trình có 2 nghiệm phân biệt:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Kết luận : - Nếu m ≥ 1 thì phương trình vô nghiệm

- Nếu m < 1 thì phương trình có hai nghiệm phân biệt:

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

B. Bài tập

Câu 1: Tìm m để phương trình x2 – 2(m - 1)x – m = 0(1) có hai nghiệm phân biệt

A. m > 1

B. m = 2

C. m < 2

D. ∀ m ∈ R

Giải

Phương trình (1) là phương trình bậc hai có

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Suy ra phương trình  (1) luôn có 2 nghiệm phân biệt

Vậy đáp án đúng là D

Câu 2: Tìm m để phương trình (m + 2)x2 – (2m + 3)x + m = 0(1) có nghiệm

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Giải

Trường hợp 1: nếu m = -2 thì phương trình (1) trở thành

x - 2 = 0 ⇔ x = 2 ⇒ m = -2 (thỏa mãn)

Trường hợp 2: nếu m ≠ -2 thì phương trình (1) là phương trình bậc hai có

∆ = b2 – 4ac = (2m + 3)2 – 4m(m + 2) = 4m + 9

Phương trình (1) có nghiệm ⇔ Δ ≥ 0 ⇔ 4m + 9 ≥ 0 ⇔ m ≥ Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Kết hợp 2 trường hợp ta có  với m ≥ Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình (1) có nghiệm     

Vậy đáp án đúng là B

Câu 3: Tìm a để phương trình (a – 3)x2 – 2(a - 1)x + a - 5 = 0(1) có một nghiệm

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Giải

Trường hợp 1: nếu a = 3 thì phương trình (1) trở thành

-4x - 2 = 0 ⇔ x = Cách giải và biện luận phương trình bậc hai một ẩn cực hay ⇒  a = 3 (thỏa mãn)

Trường hợp 2: nếu a ≠ 3 thì phương trình (1) là phương trình bậc hai có

∆ꞌ = (bꞌ)2 – ac = (a - 1)2 – (a - 3)(a - 5) = a2 - 2a + 1 – a2 + 8a – 15 = 6a – 14

Suy ra phương trình  (1) có 1 nghiệm khi 6a – 14 = 0 Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Vậy với a = 3 hoặc Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình có 1 nghiệm

Vậy đáp án đúng là A

Câu 4: Tìm m để phương trình x2 – mx - x + m = mx – 3m (1) có nghiệm kép

A. m = 1

B. m = 2

C. m = 3

D. m = 4

Giải

Phương trình (1) ⇔ x2 - mx - x + m - mx + 3m = 0

⇔ x2 - 2(m + 1) + 4m = 0

Phương trình (1) là phương trình bậc hai có

∆ꞌ = (bꞌ)2 – ac = (m+1)2 - 4m.1

= m2 + 2m + 1 - 4m

= m2 – 2m + 1 =

Suy ra phương trình  (1) có nghiệm kép khi  ∆ꞌ = 0 ⇔ (m - 1)2 = 0 ⇔ m = 1

Vậy đáp án đúng là A

Câu 5: Tìm m để phương trình (m – 1)x2 – 2mx + m + 1 = 0 (1) vô nghiệm

A. m > -3

B. m = -2

C. m < 7

D. Không có giá trị nào của m

Giải

Trường hợp 1: nếu m = 1 thì phương trình (1) trở thành

⇔ -2x + 2 = 0 ⇔ x = 1 ⇔  m = 1 (không thỏa mãn)

Trường hợp 2: nếu m ≠ 1 thì phương trình (1) là phương trình bậc hai có

∆ꞌ = (bꞌ)2 – ac = m2 – (m – 1)(m + 1) = m2 – m2 + 1 = 1 > 0 ∀ m ≠ 1

Suy ra phương trình  (1) luôn có nghiệm với mọi m, nghĩa là không có giá trị nào của m để phương trình vô nghiệm

Vậy đáp án đúng là D

Câu 6: Tìm m để phương trình mx2 + 2mx + m - 4 = 0 (1) có ít nhất một nghiệm

A. m > 0

B. m < 0

C. m < 1

D. m > 1

Giải

Trường hợp 1: nếu m = 0 thì phương trình (1) trở thành

-4 = 0 (phương trình vô nghiệm)

⇒ m = 0 (không thỏa mãn)

Trường hợp 2: nếu m ≠ 0 thì phương trình (1) là phương trình bậc hai có

∆ꞌ = (bꞌ)2 – ac = m2 –m(m – 4) = m2 – m2 + 4m = 4m

Để phương trình (1) có ít nhất một nghiệm thì  ∆ꞌ ≥ 0 ⇔ 4m ≥ 0 ⇔ m ≥ 0

Vì đang xét m ≠ 0 nên m > 0

Vậy với m > 0 thì phương trình có ít nhất 1 nghiệm

Vậy đáp án đúng là A

Câu 7: Tìm m để phương trình (m - 1)x2 + 2(m - 1)x - m = 0 (1) có nghiệm kép

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Giải

Phương trình (1) có nghiệm kép

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Với m = 1, không thỏa mãn m ≠ 1 nên loại

Với Cách giải và biện luận phương trình bậc hai một ẩn cực hay, thỏa mãn m ≠ 1nên nhận

Vậy với Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình có nghiệm kép.

Đáp án đúng là C

Câu 8: Tìm m để phương trình (2m-1)x2 - 2(m + 4)x +5m + 2 = 0 (1) có 2 nghiệm phân biệt

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Giải

Phương trình (1) có nghiệm 2 nghiệm phân biệt

Cách giải và biện luận phương trình bậc hai một ẩn cực hay

Vậy với -1 < m < 2 và Cách giải và biện luận phương trình bậc hai một ẩn cực hay thì phương trình có 2 nghiệm phân biệt

Đáp án là A

Câu 9: Tìm m để phương trình x2 – 2mx – m2 – 1 = 0 có hai nghiệm phân biệt

A. m > 0

B. Mọi giá trị của m

C. m < 7

D. Không có giá trị nào của m

Giải

Phương trình có hai nghiệm phân biệt ⇔ Δ' > 0 

⇔ m2 - 1.(-m2 - 1) > 0

⇔ 2m2 + 1 > 0 luôn đúng với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m

Đáp án B

Câu 10: Tìm a và b để phương trình ax2 + (ab + 1)x + b = 0 (1) vô nghiệm

A. a = 2, b = -4

B. a = 1, b ∈ R

C. a > 0, b < 1

D. Không có giá trị nào của a và b

Giải

Nếu a = 0 thì phương trình (1) có dạng x + b = 0 ⇔ x = -b

⇒ với a = 0 và b ∈ R thì (1) luôn có một nghiệm (loại)

Nếu a ≠ 0 thì (1) là phương trình bậc hai có

  Cách giải và biện luận phương trình bậc hai một ẩn cực hay

phương trình (1) luôn có nghiệm với mọi a, b (loại)

Vậy không có giá trị nào của a và b để phương trình (1) vô nghiệm

Đáp án D

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên